A Novel Concept to Improve the Performance of LED Panel Using Drilled Holes

Author(s):  
S. B. Chiang ◽  
C. C. Wang

In this study, the concept of the thermal module of LEDs cooling by use of drilled hole to entrain air flow was examined. It is found that the drilled hole does not necessarily improve the overall performance. It depends on the size of the drilled hole, the number of drilled holes, and the locations. The heat transfer coefficients are generally increased with the number of drilled holes and the diameter of the drilled hole. In this paper, the plate fin heat sink has a higher heat transfer coefficients than pin fins, but the overall performance of the LED panel having pin fin outperforms that of plate fin. This is because the pin fin provides much larger surface area. For decrease the maximum temperature of the LED panel, placement of the drilled holes along the hot region will be more effective.

Author(s):  
Ali Kosar ◽  
Yoav Peles

An experimental study has been performed on single-phase heat transfer of de-ionized water over a bank of shrouded micro pin fins 243-μm long with hydraulic diameter of 99.5-μm. Heat transfer coefficients and Nusselt numbers have been obtained over effective heat fluxes ranging from 3.8 to 167 W/cm2 and Reynolds numbers from 14 to 112. The results were used to derive the Nusselt numbers and total thermal resistances. It has been found that endwalls effects are significant at low Reynolds numbers and diminish at higher Reynolds numbers.


Author(s):  
Hao-Wei Wu ◽  
Hootan Zirakzadeh ◽  
Je-Chin Han ◽  
Luzeng Zhang ◽  
Hee-Koo Moon

A three-passage internal cooling test model with a 180° U-bend at the hub turn portion was used to perform the investigation. The flow is radially inward at the second passage, while it is radially outward at the third passage after the U-bend. Measurement was conducted at the second and the third passages. Aspect ratio of the second passage is 2:1 (AR=2), while the third passage is wedge-shaped with side wall slot ejections. The squared ribs with P/e = 8, e/Dh = 0.1, α = 45°, were configured on both leading and trailing surfaces along the second passage, and also the inner half of the third passage. Three rows of cylinder-shaped pin-fins with diameter of 3 mm were placed at both leading and trailing surfaces of the outer half of the third passage. The results showed that the rotating effects on radial inward flow and radial outward flow are consistent with previous studies. When there is no turning vane, heat transfer on the leading surface at hub turn region is increased by rotation, while it is decreased on the trailing surface. The presence of turning vane reduces the effect of rotation on hub turn portion. Ejection and pin-fin array enhance heat transfer at the third passage. Even though there is mass loss of cooling air along the third passage with side wall slot ejection, the heat transfer coefficient remains high until the end of the passage. Correlation between regional heat transfer coefficients and rotation numbers is presented for both cases of with and without turning vane.


Author(s):  
Eric D. Truong ◽  
Erfan Rasouli ◽  
Vinod Narayanan

A combined experimental and computational fluid dynamics study of single-phase liquid nitrogen flow through a microscale pin-fin heat sink is presented. Such cryogenic heat sinks find use in applications such as high performance computing and spacecraft thermal management. A circular pin fin heat sink in diameter 5 cm and 250 micrometers in depth was studied herein. Unique features of the heat sink included its variable cross sectional area in the flow direction, variable pin diameters, as well as a circumferential distribution of fluid into the pin fin region. The stainless steel heat sink was fabricated using chemical etching and diffusion bonding. Experimental results indicate that the heat transfer coefficients were relatively unchanged around 2600 W/m2-K for flow rates ranging from 2–4 g/s while the pressure drop increased monotonically with the flow rate. None of the existing correlations in literature on cross flow over a tube bank or micro pin fin heat sinks were able to predict the experimental pressure drop and heat transfer characteristics. However, three dimensional simulations performed using ANSYS Fluent showed reasonable (∼7 percent difference) agreement in the average heat transfer coefficients between experiments and CFD simulations.


Author(s):  
Massimiliano Rizzi ◽  
Ivan Catton

An experimental study of a pin fin heat sink was carried out in support of the development of heat sink optimization methods requiring more detailed measurements be made. Measurements of heat flux and temperature are used to separately determine heat transfer coefficients for the pins and the base region between the pins. Three pitch to diameter ratios (distance from pin center to pin center measured diagonally) were studied: P/d = 3/1, 9/4, 3/2. Heat generation was accomplished using cartridge heaters inserted into a copper block. The high thermal conductivity of the copper ensured that the surface beneath the heat sink would be at a constant temperature. The cooling fluid was air and the experiments were conducted with a Reynolds numbers based on a porous media type hydraulic diameter ranging from 500 to 25000. The channel had a shroud that touches the fin tips, eliminating any flow bypass. The pin surface heat transfer coefficients match the values reported by Kays and London and by Zukauskas. The base region heat transfer coefficients were, surprisngly, larger than the pin values.


1999 ◽  
Vol 122 (3) ◽  
pp. 282-285 ◽  
Author(s):  
Luis A. Brignoni ◽  
Suresh V. Garimella

Experimental measurements were obtained to characterize the thermal performance of ducted air suction in conjunction with a pin-fin heat sink. Four single nozzles of different diameters and two multiple-nozzle arrays were studied at a fixed nozzle-to-target distance, for different turbulent Reynolds numbers 5000⩽Re⩽20,000. Variations of nozzle-to-target distance, i.e., open area, in ducted suction were found to have a strong effect on heat transfer especially with the larger diameter single nozzle and both multiple-nozzle arrays. Enhancement factors were computed with the heat sink in suction flow, relative to a bare surface, and were in the range of 8.3 to 17.7, with the largest value being obtained for the nine-nozzle array. Results from the present study on air jet suction are compared with previous experiments with air jet impingement on the pin-fin heat sink. Average heat transfer coefficients and thermal resistance values are reported for the heat sink as a function of Reynolds number, air flow rate, and pumping power. [S1043-7398(00)00903-8]


1984 ◽  
Vol 106 (1) ◽  
pp. 241-244 ◽  
Author(s):  
B. A. Brigham ◽  
G. J. VanFossen

Recently, several experiments concerning heat transfer from short pin fins have been conducted with the results indicating lower heat transfer from short pin fins than from longer pin fins found in tube banks and other similar configurations. Assessments of the effect of the number of pin rows and row geometry have also been made. It was felt that there was a need to determine the relative contribution of pin length to diameter ratio and pin row geometry on the heat transfer. Array-averaged heat transfer coefficients on pin and endwall surfaces were measured for two configurations of staggered arrays of short pin fins (length to diameter ratio of 4). One configuration contained eight streamwise rows of pins, while the other contained only four rows. Results showed that both the eight-row and the four-row configurations for an Lp/D of 4 exhibit higher heat transfer than in similar tests on shorter pin fins (Lp/D of 1/2 and 2). It was also found that for this Lp/D ratio the array-averaged heat transfer was slightly higher with eight rows of staggered pins than with only four rows.


Author(s):  
Jun Su Park ◽  
Kyung Min Kim ◽  
Dong Hyun Lee ◽  
Hyung Hee Cho ◽  
Minking K. Chyu

Pin-fins have been used to enhance the heat transfer near the trailing edge of a turbine airfoil. Previous pin-fin heat transfer studies focused mainly on the array geometry of pin height-to-diameter equal to unity in a stationary frame. This study experimentally examines the effects of pin height-to-diameter ratio (Hp/Dp) from 2 to 4 and rotation number (Ro) from 0 to 0.2. The tested model used a staggered pin-fin array with an inter-pin spacing of 2.5 times the pin-diameter (S/D = 2.5) in both longitudinal and transverse directions. Detailed heat/mass transfer coefficients were measured using the naphthalene sublimation technique with a heat-mass transfer analogy. The data measured suggest that an increase in Hp/Dp increases the level of array heat/mass transfer. Array averaged Sherwood numbers for Hp/Dp = 3 and Hp/Dp = 4 are approximately 10% and 35% higher than that of Hp/Dp = 2. The effect of rotation induces notable difference in heat/mass transfer between the leading surface and the trailing surface. The heat transfer coefficients change a little although the rotating number increases in the tested range because the pin-fins break the rotation-induced vortices.


2021 ◽  
Vol 143 (6) ◽  
Author(s):  
Izzet Sahin ◽  
I-Lun Chen ◽  
Lesley M. Wright ◽  
Je-Chin Han ◽  
Hongzhou Xu ◽  
...  

Abstract In the current study, the heat transfer and pressure drop characteristics of a rotating, partial pin-finned, cooling channel that has a trapezoidal cross section and converges from the hub to tip in both the streamwise and spanwise directions are experimentally investigated. To model the geometry of an internal trailing edge cooling passage, the channel is oriented with respect to the direction of rotation (β = 120 deg). Isolated copper plates are used to obtain regionally averaged heat transfer coefficients on the leading and trailing surfaces. Pressure drop is measured using pressure taps placed at the inlet and outlet of the channel. Utilizing Dp = 5 mm diameter pins, a staggered array is created. For this array, the streamwise pin-spacing, Sy/Dp = 2.1, was kept constant; however, the spanwise pin-spacing, Sx/Dp, was varied from the hub to tip between 3 and 2.6 due to the channel convergence. Experiments were conducted for two partial pin-fin sets having pin length-to-diameter ratios of Sz/Dp = 0.4 and 0.2. The rotation number was varied from 0 to 0.21 by ranging the inlet Reynolds number from 10,000 to 40,000 and rotation speed from 0 to 300 rpm. A significant decrease in pressure loss and a slight reduction in heat transfer enhancement are observed with the use of partial pin-fins compared with the previously reported full pin-fin converging channel study. This provides better thermal performances of the partial pin-fin arrays compared with the full pin-fin array, in the converging channels.


Author(s):  
Rui Kan ◽  
Jing Ren ◽  
Hongde Jiang

Pin fin arrays and perforated blockages are both important methods for gas turbine trailing edge cooling. Perforated blockages result in higher heat transfer coefficients with larger pressure loss penalty. For enhanced heat transfer with medium pressure loss, we installed a perforated blockage at the inlet of pin fin arrays and studied the combined effects between impingement and pin fin. Heat transfer coefficients were measured with the transient liquid crystal method and the lumped capacitance model. Flow field was investigated using the RNG k-ε model. Six configurations with different flow area ratio, hole distribution and hole aspect ratio were examined at duct Reynolds number between 9,000 and 20,000. The results reveal that under impingement condition, Nusselt number for the first two rows of pin fins near the stagnation point is 2∼3 times larger than the baseline case without impingement. The most important parameter for heat transfer and friction loss is the area ratio. The average Nusselt number increases 20%∼50% with impingement, and the friction factor increases 4∼20 times. Heat transfer and friction loss for the combined configurations satisfy the correlation Nu = 0.1766Re0.702f0.188.


2013 ◽  
Vol 284-287 ◽  
pp. 697-701
Author(s):  
Tzer Ming Jeng ◽  
Sheng Chung Tzeng

The device made of fan and pin-fin heat sink should be a powerful heat sink for LED lamp. This study used transient liquid crystal experimentation to measure the end-wall heat transfer coefficient of linearly arrayed square pin array in the rectangular channel, and discussed the influence of axial spacing on heat transfer. The air was used as operating fluid, and the square pin size was 8 mm (d) × 8 mm (d) × 64 mm (Hf), arrayed in a 240 mm (L) × 120 mm (W) × 64 mm (H) rectangular channel. The relative lateral spacing (XT=ST/d) was set as 3, and the relative axial spacing (XL=SL/d=1.88~5) and the Reynolds number (Re=11047~17937) were changed. Considering the end-wall area, the average Nusselt number with square pin was 1.46~2.58 times of that without square pin, and the square pin array of XL= 3.75 had the maximum end-wall heat transfer gain.


Sign in / Sign up

Export Citation Format

Share Document