scholarly journals On thermosolutal convection in presence of compressible fluid with fine dust

2014 ◽  
Vol 19 (1) ◽  
pp. 133-143
Author(s):  
M. Singh ◽  
R.K. Gupta

Abstract A layer of a Rivlin-Ericksen elastico-viscous fluid heated and soluted from below in the presence of compressibility and suspended particles (fine dust) effect is considered. For stationary convection, the Rivlin- Ericksen, elastico-viscous fluid behaves like a Newtonian fluid. The oscillatory modes are introduced due to the presence of a stable solute gradient, suspended particles destabilize the system whereas the stable solute gradient has a stabilizing effect on the system and the effect of compressibility is to postpone the onset of thermosolutal convection. The stable solute gradient and compressibility postpone the onset of convection, whereas the suspended particles hasten the onset of convection. The stable solute gradient introduces oscillatory modes in the systems which were non-existent in its absence

2018 ◽  
Vol 23 (3) ◽  
pp. 813-820 ◽  
Author(s):  
A.K. Aggarwal ◽  
D. Dixit

Abstract The thermosolutal stability of a layer of the Rivlin-Ericksen fluid in a porous medium is considered under varying gravity conditions. It is found that for stationary convection, medium permeability and suspended particles have a destabilizing/stabilizing effect when gravity increases/decreases. The stable solute gradient has a stabilizing effect on the system.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Mahinder Singh ◽  
Rajesh Kumar Gupta

An investigation is made on the effect of suspended particles (fine dust) on double-diffusive convection of a compressible Rivlin-Ericksen elastico-viscous fluid. The perturbation equations are analyzed in terms of normal modes after linearizing the relevant set of equations. A dispersion relation governing the effects of viscoelasticity, compressibility, stable solute gradient, and suspended particles is derived. For stationary convection, Rivlin-Ericksen fluid behaves like an ordinary Newtonian fluid due to the vanishing of the viscoelastic parameter. The stable solute gradient compressibility has a stabilizing effect on the system whereas suspended particles hasten the onset of thermosolutal instability. The Rayleigh numbers and the wave numbers of the associated disturbances for the onset of instability as stationary convection are obtained and the behaviour of various parameters on Rayleigh numbers has been depicted graphically. It has been observed that oscillatory modes are introduced due to the presence of viscoelasticity, suspended particles, and stable solute gradient which were not existing in the absence of these parameters.


2012 ◽  
Vol 67 (5) ◽  
pp. 275-281
Author(s):  
Mahinder Singh ◽  
Pardeep Kumar

The effect of a uniform vertical magnetic field on thermosolutal convection in a layer of an electrically conducting couple-stress fluid heated and soluted from below is considered. For the case of stationary convection, the stable solute gradient, magnetic field, and couple-stress parameter have stabilizing effect on the system. It is also observed that a stable solute gradient and a magnetic field introduce oscillatory modes in the system, but in the absence of a stable solute gradient and a magnetic field, oscillatory modes are not allowed and the principle of exchange of stabilities is valid.


2013 ◽  
Vol 18 (1) ◽  
pp. 99-112 ◽  
Author(s):  
P. Kumar ◽  
H. Mohan

Thermosolutal instability in a compressible Walters B’ viscoelastic fluid with suspended particles through a porous medium is considered. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For stationary convection, the Walters B’ viscoelastic fluid behaves like a Newtonian fluid and it is found that suspended particles and medium permeability have a destabilizing effect whereas the stable solute gradient and compressibility have a stabilizing effect on the system. Graphs have been plotted by giving numerical values to the parameters to depict the stability characteristics. The stable solute gradient and viscoelasticity are found to introduce oscillatory modes in the system which are non-existent in their absence.


2004 ◽  
Vol 8 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Pardeep Kumar ◽  
Jit Singh ◽  
Roshan Lal

The effect of suspended particles on the thermal instability of Walters B' viscoelastic fluid in hydromantic in porous medium is considered. For stationary convection, Walters B' viscoelastic fluid behaves like a Newtonian fluid. The medium permeability and suspended particles has ten the onset of convection whereas the magnetic field postpones the onset of convection, for the case of stationary convection. The magnetic field and viscoelasticity intro duce oscillatory modes in the system which was non-existent in their absence.


2009 ◽  
Vol 64 (7-8) ◽  
pp. 448-454
Author(s):  
Pardeep Kumar ◽  
Mahinder Singh

AbstractThe thermosolutal instability of couple-stress fluid in the presence of uniform vertical rotation is considered. Following the linearized stability theory and normal mode analysis, the dispersion is obtained. For the case of stationary convection, the stable solute gradient and rotation have stabilizing effects on the system, whereas the couple-stress has both stabilizing and destabilizing effects. The dispersion relation is also analyzed numerically. The stable solute gradient and the rotation introduce oscillatory modes in the system, which did not occur in their absence. The sufficient conditions for the non-existence of overstability are also obtained.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Parul Aggarwal ◽  
Urvashi Gupta

The paper deals with the theoretical investigation of the effect of dust/suspended particles on a layer of electrically conducting micropolar fluid heated and dissolved from below in the presence of a uniform vertical magnetic field in a porous medium. The presence of coupling between thermosolutal and micropolar effects and magnetic field brings oscillatory motions in the system. A dispersion relation governing the effects of solute gradient, magnetic field, and suspended particles is obtained for a fluid layer contained between two free boundaries using linear stability theory and normal mode technique. Graphs have been plotted by giving numerical values to various parameters involved to depict the stability characteristics for both cases of stationary convection and overstability. It has been found that, for permissible values of various parameters under consideration, the effect of magnetic field and solute gradient is stabilizing and that of medium permeability, suspended particles, and micropolar coefficient is destabilizing. Further it is found that the Rayleigh number for overstability is always less than that for stationary convection except for high values of suspended particle factor.


1997 ◽  
Vol 52 (4) ◽  
pp. 369-371 ◽  
Author(s):  
R. C. Sharma ◽  
P. Kumar

Abstract The thermal instability of a layer of Rivlin-Ericksen elastico-viscous fluid acted on by a uniform vertical magnetic field is considered. For stationary convection, a Rivlin-Ericksen elastico-viscous fluid behaves like a Newtonian fluid. The magnetic field has a stabilizing effect. It is found that the presence of a magnetic field introduces oscillatory modes which were non-existent in its absence. The sufficient condition for the non-existence of overstability is also obtained.


2019 ◽  
Vol 24 (4) ◽  
pp. 1-11
Author(s):  
A.K. Aggarwal ◽  
D. Dixit

Abstract In this paper, triple diffusive convection in a Rivlin-Ericksen fluid layer, which is permeated with suspended particles in the porous medium under the effect of compressibility and variable gravity, is investigated. Linear stability theory and normal mode analysis have been used to study the problem under consideration. It is observed that, for stationary convection, suspended particles, compressibility and medium permeability have destabilizing/stabilizing effects under certain conditions. The variable gravity parameter destabilizes the system whereas stable solute gradients have a stabilizing effect.


2012 ◽  
Vol 16 (1) ◽  
pp. 177-192 ◽  
Author(s):  
Urvashi Gupta ◽  
Parul Aggarwal ◽  
Kumar Wanchoo

An investigation is made on the effect of Hall currents and suspended particles on the hydromagnetic stability of a compressible, electrically conducting Rivlin-Ericksen elastico-viscous fluid. The perturbation equations are analyzed in terms of normal modes after linearizing the relevant set of hydromagnetic equations. A dispersion relation governing the effects of viscoelasticity, magnetic field, Hall currents, compressibility and suspended particles is derived. For the stationary convection Rivlin-Ericksen fluid behaves like an ordinary Newtonian fluid due to the vanishing of the viscoelastic parameter. Compressibility and magnetic field are found to have a stabilizing effect on the system whereas Hall currents and suspended particles hasten the onset of thermal instability. These analytic results are confirmed numerically and the effects of various parameters on the stability parameter are depicted graphically. The critical Rayleigh numbers and the wavenumbers of the associated disturbances for the onset of instability as stationary convection are obtained and the behavior of various parameters on critical thermal Rayleigh numbers has been depicted graphically. It has been observed that oscillatory modes are introduced due to the presence of viscoelasticity, suspended particles and Hall currents which were not existing in the absence of these parameters.


Sign in / Sign up

Export Citation Format

Share Document