scholarly journals Impact of the fixed and variable component of electricity price on the economic viability of a small-scale photovoltaic power plant

2021 ◽  
Vol 72 (2) ◽  
pp. 140-147
Author(s):  
František Janíček ◽  
Ján Poničan ◽  
Matej Sadloň

Abstract The article analyzes electricity prices in Slovakia, their distribution tari component, and their significant impact on small-scale photovoltaic power plants (PVPs). Fixed part of the distribution tari component in Slovakia varies considerably, given the region of operation of the distribution system operator as well as the allocated tari rate. Profitability of the small-scale PVP in Slovakia is widely discussed, with differing opinions of the lay and professional public. The article will explain under what circumstances all the opinions may be true. Profitability predictions available online or done by PVP installers are extremely simplified and lead to misleading results. The existence of fixed and variable components of the price plays a significant role and a simple change of the electricity tari may bring significant savings and shorten the payback time of the PVP investment. However, this is a complex issue and requires several other factors to be considered, too. The most important ones are the fixed component of the electricity price, household consumption diagram and the distribution system to which the household is connected.

IJOSTHE ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 5
Author(s):  
Ankeeta . ◽  
Vasant Acharya

Power generation through the renewable energy sources has become more viable and economical than the fossil fuel based power plants. By integrating small scale distributed energy resources, microgrids are being introduced as an alternative approach in generating electrical power at distribution voltage level. The power electronic interface provides the necessary flexibility, security and reliability of operation between micro-sources and the distribution system. The presence of non-linear and the unbalanced loads in the distribution system causes power quality issues in the Microgrid system. This paper explores and reviews different control strategies developed in the literature for the power quality enhancement in microgrids.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3489 ◽  
Author(s):  
Gábor Pintér ◽  
Henrik Zsiborács ◽  
Nóra Hegedűsné Baranyai ◽  
András Vincze ◽  
Zoltán Birkner

The use of solar energy is an obvious choice; the energy of the sun is not only indispensable for most processes in nature but it is also a clean, abundant, sustainable, and—most importantly—universally available resource. Although the further spread of photovoltaic systems, which make use of this source of energy, is expected in the future all around the world, no comprehensive investigation has been conducted into the current situation of the small-scale photovoltaic power plants in Hungary, where this type of photovoltaic system is the most popular. By means of a case study, whose novelty lies in its focus on small-scale power plants and their complex examination, including economic and geographic indicators, this paper analyzes their status in Hungary. The study endeavors to establish the reasons for the popularity of this type of power plant and to identify some typical geographical locations with well-illustrated photovoltaic density. Residential, as well as business prosumers, were examined with the aim of learning more about the density of the small-scale photovoltaic systems and their geographical locations. Another goal was to calculate the average size of small-scale photovoltaic power plants and to gain more understanding of their economic aspects. The outcomes of this research include maps displaying the density of the small-scale photovoltaic power plants in Hungary and the results of the economic calculations for such investments.


Author(s):  
Khodakhast Nasirian ◽  
Hadi Taheri

By increasing the dependence of modern life on Electric equipment and computer systems, power quality and reliability are two essential needs. This need for critical loads such as hospitals, -Telecommunication systems, and information centers is felt more and more. On the other hand, the production of power at the centralized power plants and its transmission face many problems, such as environmental pollution, occupation a lot of ground for transmission lines, and voltage drop Which causes the huge cost of electricity to be consumed. According to these facts, in recent years the necessity for considering other technologies for generating electricity which need less investment with better quality and reliability has been quite tangible. Recent Developments in Small-scale power generation technologies and utilization Renewable Energies such as photo-voltaic as well as innovation-In power electronics, it causes a high tendency among power companies to explore of Distributed Generation Recourses (DGR) in the distribution system and Near to consumers


2016 ◽  
Vol 19 ◽  
pp. 74-80
Author(s):  
Ralf Böhm ◽  
Ralph M. Schaidhauf ◽  
Robert Spanheimer ◽  
Diana Maria Erdmann ◽  
Jörg Franke

Due to guaranteed feed-in tariffs under the Renewable Energy Act and the feed-in precedence of renewable power generation plants the operation of biogas plants in Germany is currently plannable and economically advantageous. However, it is foreseeable that without this subvention biogas plants cannot compete with other regenerative plants such as photovoltaic and wind power plants on the open electricity market. Accordingly, it is of great importance for biogas plant operators to identify and occupy suitable niches to make full use of the unique features of their plants. Because of their predictable availability, those plants can particularly benefit of earning opportunities in times of high demand and contribute to grid stabilization. In order to keep the effort for plant operators as low as possible the automation of existing biogas plants can be extended and enabled to communicate with market platforms or control centers of the distribution system operator. Thus biogas plants can contribute to balancing group compensation not only for accounting purposes but factual by appropriate feed-in into the electrical network in consideration of actual demand.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 4
Author(s):  
Nóra Hegedűsné Baranyai ◽  
Henrik Zsiborács ◽  
András Vincze ◽  
Nóra Rodek ◽  
Martina Makai ◽  
...  

In the global transformation of energy systems, solar energy plays a prominent role, since the energy from our star is a limitless and clean resource, which is available practically almost everywhere. In spite of the immense advancements of photovoltaic systems, which utilize this source of energy, no in-depth research has been carried out regarding the present Hungarian status of the small-scale photovoltaic power plants, the most common type of solar power plant in Hungary. The novelty of this study is that it examines the number and power of these small-scale power plants at the settlement level within the service areas of the various distribution companies, by also considering the economic and infrastructural dimensions of the settlements. The paper seeks answers to the questions whether there are any significant relationships between the number and the power of power plants of this type and the indicators of the settlements, and if so, how strong they are. Besides pairwise correlations, the study also involved the analysis of the relationship between the ranking of the settlements based on the settlements’ complex indicators that were created from the settlements’ indicators and the ranking of the settlements according to the number and power of household-sized photovoltaic power plants per 1000 people. In the course of exploring the relationships, a regression model was also devised concerning the number of household-sized photovoltaic power plants and the settlement indicators.


2021 ◽  
Author(s):  
◽  
Daniel Burmester

<p>Distributed generation, in the form of small-scale photovoltaic installations, have the potential to reduce carbon emissions created by, and alleviate issues associated with, centralised power generation. However, the major obstacle preventing the widespread integration of small-scale photovoltaic installations, at a residential level, is intermittency. This thesis addresses intermittency at a household/small community level, through the use of "nanogrids". To date, ambiguity has surrounded the nanogrid as a power structure, which is resolved in this thesis through the derivation of concise nanogrid definition. The nanogrid, a power distribution system for a single house/small building, is then used to implement demand side management within a household. This is achieved through the use of a hybrid central control topology, with a centralised coordinating controller and decentralised control nodes that have the ability to sense and modulate power flow. The maximum power point tracker is used to observe the available photovoltaic power, and thermostatically controlled loads present in the household are manipulated to increase the correlation between power production and consumption. An algorithm is presented which considers the expected power consumption of the thermostatically controlled loads over a 24 hour period, to create a hierarchical ratio. This ratio determines the percentage of available photovoltaic power each load receives, ensuring the loads that are expected to consume the most power are serviced with the largest ratio of photovoltaic power. The control system is simulated with a variety of household consumption curves (altered for summer/winter conditions), and a week of realistic solar irradiance data for both summer and winter. In each simulated scenario, a comparison was made between controlled and uncontrolled households to ascertain the extent grid power consumed by a household could be reduced, in turn reducing the effect of intermittency. It was found that the system had the ability to reduce the grid power consumed by as much as 61.86%, with an average reduction of 44.28%. This thesis then explores the concept of interconnecting a small community of nanogrids to form a microgrid. While each nanogrid within the network has the ability to operate independently, a network control strategy is created to observe the possibility of further reducing grid power consumed by the community. The strategy considers the photovoltaic power production and thermostatically controlled loads operating within the network. A ratio of the network's photovoltaic power is distributed to the thermostatically controlled loads, based on their expected consumption over a 24 hour period (highest consumption receives largest ratio of power). This was simulated with a range of household cluster sizes, with varied consumption patterns, for a week with summer/winter solar irradiance. The tests show that, compared to an uncontrolled nanogrid network, the combined control can reduce grid power consumed by as much as 55%, while a 7% decrease is seen when comparing the combined control to the individually controlled nanogrid networks. When compared to an uncontrolled individual house scenario, the combined control interconnected nanogrids can reduce the power purchase from the grid by as much as 61%.</p>


2021 ◽  
Vol 12 (1) ◽  
pp. 239-250
Author(s):  
Zhi Fang ◽  
Yuzhang Lin ◽  
Shaojian Song ◽  
Chi Li ◽  
Xiaofeng Lin ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2087
Author(s):  
Zbigniew Brodziński ◽  
Katarzyna Brodzińska ◽  
Mikołaj Szadziun

The abandonment of conventional sources in favor of energy from renewable energy sources (RES) has a global dimension, and the dynamic increase in the share of energy from photovoltaic systems in the energy mix of many countries results from the possibility of obtaining it both on a small scale (micro-installations) and as part of economic investments (photovoltaic power plants). The study aimed to assess the economic efficiency of 22 photovoltaic farms located in northeastern Poland. The research covered 5 solar power plants with a capacity of up to 799 kWp (I), 13 between 800 and 1100 kWp (II), and 4 installations of 1.98 MWp (III). The evaluation was based on net present value (NPV), internal rate of return (IRR), payback period (PP), profitability index (PI), accounting rate of return (ARR). Additionally, a sensitivity analysis was carried out regarding the value of economic indicators. The analysis shows that all studied PV farms are economically justified investments (NPV > 0) regardless of the adopted scenario. Solar power plants of the largest analyzed capacity (group III) resulted in being the most profitable ones, but no linear relationship between the level of productivity and profitability was established. Due to the large variation in terrain shape in northeastern Poland, landscape value and social benefits, which are difficult to assess, the support system for investments regarding the construction of photovoltaic power plants proved to be the most effective in group I.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 3030 ◽  
Author(s):  
Giovanni M. Casolino ◽  
Arturo Losi

The demand becoming flexible is a requirement for the full exploitation of renewable energy sources. Aggregation may foster the provision of flexibility by small-scale providers connected to distribution grids, since it allows offering significant flexibility volumes to the market. The aggregation of flexibility providers is carried out by the aggregator, a new market role and possibly a new market player. Location information of individual flexibility providers is necessary for both the aggregator and the system operators, in particular, the Distribution System Operator (DSO). For the former, information should allow treating a high number of individual flexibility providers as a single provider to offer significant flexibility volumes to the markets; for the latter, the information should ensure an adequate visibility of the connection of the individual providers to the grid. In the paper, the concept of Load Area (LA) is recalled, which combines the needs of location information of the aggregator and of the DSO. A method for the identification and modeling of LAs for the general case of unbalanced radial systems is proposed. The results of the methods’ application to two studied unbalanced networks are presented, showing the effectiveness and viability of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document