scholarly journals Design of dual-band implanted patch antenna system for bio-medical applications

2021 ◽  
Vol 72 (4) ◽  
pp. 240-248
Author(s):  
Ahmed Z. A. Zaki ◽  
Tamer Gaber Abouelnaga ◽  
Ehab K. I. Hamad ◽  
Hala A. Elsadek

Abstract In this paper, a miniaturized implantable antenna system for biomedical applications is presented. The system consists of almost two similar patch antennas, named internal and external. The internal antenna is implanted inside the body at a depth of 2 mm, and the external antenna is to be attached to the body aligned with the internal one. The antenna system consists of implant-side antenna with dimensions are 10.25×10.25×1.27 mm3 , while the external antenna dimensions are 11.1×11.1×1.27 mm3. The proposed antennas designs showed dual resonant frequency on ISM bands (ie , 915 MHz and 2450 MHz ). The computed -10 dB bandwidth considering three-layer human phantom demonstrates that a bandwidth of 870 to 970 MHz and 2.38 to 2.47 GHz for internal and external antennas are achieved. The Specific Absorption Rate (SAR) has been considered for health care consideration. The measured and simulated scattering parameters are compared, and good agreements are achieved. The proposed antenna system is simulated and investigated for biomedical applications suitability.

Author(s):  
Ahmed Z. A. Zaki ◽  
Ehab K. I. Hamad ◽  
Tamer Gaber Abouelnaga ◽  
Hala A. Elsadek

Abstract In this paper, an ultra-compact implantable antenna for biomedical applications is proposed. The proposed implanted meandered compact patch antenna is implanted inside the body at a depth of 2 mm. The proposed antenna was designed with Roger RO3003 (ɛr = 3) as substrate with an overall size of dimensions 5 × 5 × 0.26 mm3. The radiating element is a square patch antenna with different size rectangular slots and coaxial feeding. The proposed implantable antenna resonates at 2.45 GHz (from 2.26 to 2.72 GHz) frequency with a bandwidth of 460 MHz and a gain of −22.6 dB. The specific absorption rate has been considered for health care considerations, and the result is within the limits of the federal communication commission. The measured and simulated scattering parameters are compared, and good agreements are achieved. The proposed antenna is simulated and investigated for biomedical applications suitability.


Author(s):  
Farah R. Kareem ◽  
Mohamed El Atrash ◽  
Ahmed A. Ibrahim ◽  
Mahmoud A. Abdalla

Abstract All textile integrated dual-band monopole antenna with an artificial magnetic conductor (AMC) is proposed. The proposed design operates at 2.4 and 5.8 GHz for wearable medical applications to monitor the heartbeat. A flexible and low-profile E- shaped CPW dual-band textile antenna is integrated with a 4 × 4 dual-band textile AMC reflector to enhance the gain and specific absorption rate (SAR). The SAR is reduced by nearly 95% at both 1 and 10 g. The design was measured on the body with a 2 mm separation. The simulated and measured results appear in high agreement in the case of with and without AMC array integration. The measurement was performed in the indoor environment and in an anechoic chamber to validate the design based on reflection coefficient and radiation pattern measurements.


2020 ◽  
Vol 68 (2) ◽  
pp. 1161-1165 ◽  
Author(s):  
Farooq Faisal ◽  
Muhammad Zada ◽  
Asma Ejaz ◽  
Yasar Amin ◽  
Sadiq Ullah ◽  
...  

2012 ◽  
Vol 60 (12) ◽  
pp. 5587-5595 ◽  
Author(s):  
Zhu Duan ◽  
Yong-Xin Guo ◽  
Rui-Feng Xue ◽  
Minkyu Je ◽  
Dim-Lee Kwong

Author(s):  
Shraddha Pandey ◽  
Pankaj Vyas

In recent time, world have seen a rapid growth in wireless communication. Development in antenna from single band to dual band and multi band had made the antenna system more compact. A frequency reconfigurable microstrip antenna using a PIN diode for multiband operation is using many application and hot research area. In this paper, reconfigurable microstrip patch antennas and their types like frequency, polarization, radiation pattern and gain are described.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7953
Author(s):  
Sarosh Ahmad ◽  
Adnan Ghaffar ◽  
Niamat Hussain ◽  
Nam Kim

A simple dual-band patch antenna with paired L-shap slots for on- and off-body communications has been presented in this article. The proposed antenna resonates in the industrial, scientific, and medical (ISM) band at two different frequencies, at 2.45 GHz and 5.8 GHz. At the lower frequency band, the antenna’s radiation pattern is broadsided directional, whereas it is omni-directional at the higher frequency band. The efficiency and performance of the proposed antenna under the influence of the physical body are improved, and the specific absorption rate (SAR) value is significantly reduced by creating a full ground plane behind the substrate. The substrate’s material is FR-4, the thickness of which is 1.6 mm and it has a loss tangent of tanδ = 0.02. The overall size of the proposed design is 40 mm × 30 mm × 1.6 mm. Physical phantoms, such as skin, fat and muscle, are used to evaluate the impact of physical layers at 2.45 GHz and 5.8 GHz. The SAR values are assessed and found to be 0.19 W/kg and 1.18 W/kg at 2.45 GHz and 5.8 GHz, respectively, over 1 gram of mass tissue. The acquired results indicate that this antenna can be used for future on- and off-body communications and wireless services.


2018 ◽  
Vol 11 (1) ◽  
pp. 76-86 ◽  
Author(s):  
Shankar Bhattacharjee ◽  
Manas Midya ◽  
Monojit Mitra ◽  
S.R. Bhadra Chaudhuri

AbstractA planar inverted F-Antenna with the dual band-dual polarization property is presented for medical body area networks applications. The designed antenna covers the 2.45 GHz industrial, scientific and medical, 4 G long term evolution (2.5–2.69 GHz) bands for ON body communication and Wi-Fi and WLAN (3.5–3.6 GHz) bands for OFF body communication. At the lower band, an equivalent offset fed magnetic microstrip type dipole has been utilized that generate field parallel to the surface of the body for supporting ON body communication. The broadside radiation pattern has been realized using the slotted patch counterpart for supporting OFF body communication. This technique has resulted in a design of dual band dual mode property using a single radiator. The footprint of the antenna is only 0.35λg× 0.17λg× 0.08λg. Owing to its compactness, lightweight, and easy mountable property (due to foam substrate), the proposed antenna is found to be robust for MBAN applications. The maximum permissible transmitted power for the 1st band is 25.78 and 20.3 dBm for the 2nd one to maintain standard specific absorption rate limitations of 1.6 W/Kg. Experimental investigations over human body showed minimal deviations from the free space conditions which makes it a potential candidate for body-centric communications.


Sign in / Sign up

Export Citation Format

Share Document