scholarly journals Lightness Factors and Exertion Factors Related to its Own Mass of Fiber Reinforced Plastics (FRP) Applied in Composite Aeronautical Structures (Part 1)

2018 ◽  
Vol 47 (1) ◽  
pp. 5-22
Author(s):  
Mirosław Rodzewicz ◽  
Jerzy Lewitowicz

Abstract The paper concerns an application of lightness factors in comparative analysis of strength properties of basic materials being applied in aeronautical structures – in a historical perspective. The use of lightness factors enables effective estimation how lighter will be the structural elements (of the same strength or stiffness) made from different kind of materials : traditional as well as advanced composites. It is quite easy to find the solution to the inverse problem, i.e. to estimate how differ will be stiffness or strength for the same mass of the structural elements. Very particular application of the lightness factors are noted in engineers calculations of composite gliders wing spars, where they appears as the materials constants and as structure loading factors as well. The paper presents some examples of application of the lightness factors in strength analysis of the composite shells applied in the shear webs of the wing spars, and refers to the design recommendations issued by German aviation authority (LBA).

2018 ◽  
Vol 47 (1) ◽  
pp. 23-43
Author(s):  
Mirosław Rodzewicz ◽  
Jerzy Lewitowicz

Abstract The paper concerns an application of lightness factors in comparative analysis of strength properties of basic materials being applied in aeronautical structures – in a historical perspective. The use of lightness factors enables effective estimation how lighter will be the structural elements (of the same strength or stiffness) made from different kind of materials : traditional as well as advanced composites. It is quite easy to find the solution to the inverse problem, i.e. to estimate how differ will be stiffness or strength for the same mass of the structural elements. Very particular application of the lightness factors are noted in engineers calculations of composite gliders wing spars, where they appears as the materials constants and as structure loading factors as well. The paper presents some examples of application of the lightness factors in strength analysis of the composite shells applied in the shear webs of the wing spars, and refers to the design recommendations issued by German aviation authority (LBA).


Author(s):  
M. I. Valueva ◽  
I. V. Zelenina ◽  
M. A. Zharinov ◽  
M. A. Khaskov

The article presents results of studies of experimental carbon plastics based on thermosetting PMRpolyimide binder. Сarbon fiber reinforced plastics (CFRPs) are made from prepregs prepared by melt and mortar technologies, so the rheological properties of the polyimide binder were investigated. The heat resistance of carbon plastics was researched and its elastic-strength characteristics were determined at temperatures up to 320°С. The fundamental possibility of manufacturing carbon fiber from prepregs based on polyimide binder, obtained both by melt and mortar technologies, is shown. CFRPs made from two types of prepregs have a high glass transition temperature: 364°C (melt) and 367°C (solution), with this temperature remaining at the 97% level after boiling, and also at approximately the same (86–97%) level of conservation of elastic strength properties at temperature 300°С.


2011 ◽  
Vol 462-463 ◽  
pp. 207-212 ◽  
Author(s):  
Hideaki Katogi ◽  
Kenichi Takemura ◽  
Yoshinobu Shimamura

Water absorption behavior and flexural strength properties of carbon fiber reinforced plastics (CFRP) under hot-wet environment were examined. Those of epoxy resin were also examined for reference. Weight gains of CFRP and epoxy resin were measured after immersion in distilled water at temperatures under 90°C. Quasi-static flexural tests of CFRP and epoxy resin were conducted after immersion for 180 days. Weight gains of CFRP and epoxy resin increased with increasing water temperature. After immersion for 180 days at 90°C, weight gain of CFRP became 3.3times higher and that of epoxy resin was 2.3 times higher than that at RT, respectively. When CFRP and epoxy resin were immersed in distilled water at 90°C, weight gains of CFRP and epoxy resin increased and then decreased. Flexural strengths of CFRP and epoxy resin decreased in distilled water at temperatures less than 90°C. Flexural strengths of dried CFRP and epoxy resin after immersion recovered but were lower than that of virgin CFRP and epoxy resin. Debonding of fiber/resin interface and crack initiation in epoxy resin in distilled water resulted in the strength reduction.


Author(s):  
Orlov Maksim Andreyevich Et al.

The article discusses the features of the destruction of carbon fiber reinforced plastics on the basis of tfp-preforms produced using various stitching mode parameters, and provides for studies of their physical and mechanical properties and structure. The effect of the carbon fiber laying density and the piercing step of the aramid yarn on the elastic-strength properties of composites is shown. The optimal technological parameters for creating tfp-preforms of gas turbine engine blades were chosen.


PAMM ◽  
2006 ◽  
Vol 6 (1) ◽  
pp. 157-158
Author(s):  
Gerald Ernst ◽  
Christian Hühne ◽  
Raimund Rolfes

2018 ◽  
Vol 54 (2) ◽  
pp. 133-144 ◽  
Author(s):  
V. N. Paimushin ◽  
N. V. Polyakova ◽  
S. A. Kholmogorov ◽  
M. A. Shishov

Sign in / Sign up

Export Citation Format

Share Document