State Estimation Based on Generalized Gaussian Distributions

2013 ◽  
Vol 20 (1) ◽  
pp. 65-76 ◽  
Author(s):  
Xifeng Li ◽  
Yongle Xie

Abstract This paper presents a novel strategy of particle filtering for state estimation based on Generalized Gaussian distributions (GGDs). The proposed strategy is implemented with the Gaussian particle pilter (GPF), which has been proved to be a powerful approach for state estimation of nonlinear systems with high accuracy and low computational cost. In our investigations, the distribution which gives the complete statistical characterization of the given data is obtained by exponent parameter estimation for GGDs, which has been solved by many methods. Based on GGDs, an extension of GPF is proposed and the simulation results show that the extension of GPF has higher estimation accuracy and nearly equal computational cost compared with the GPF which is based on Gaussian distribution assumption.

2021 ◽  
Vol 8 ◽  
Author(s):  
P. M. Khin ◽  
Jin H. Low ◽  
Marcelo H. Ang ◽  
Chen H. Yeow

This paper introduces the development of an anthropomorphic soft robotic hand integrated with multiple flexible force sensors in the fingers. By leveraging on the integrated force sensing mechanism, grip state estimation networks have been developed. The robotic hand was tasked to hold the given object on the table for 1.5 s and lift it up within 1 s. The object manipulation experiment of grasping and lifting the given objects were conducted with various pneumatic pressure (50, 80, and 120 kPa). Learning networks were developed to estimate occurrence of object instability and slippage due to acceleration of the robot or insufficient grasp strength. Hence the grip state estimation network can potentially feedback object stability status to the pneumatic control system. This would allow the pneumatic system to use suitable pneumatic pressure to efficiently handle different objects, i.e., lower pneumatic pressure (50 kPa) for lightweight objects which do not require high grasping strength. The learning process of the soft hand is made challenging by curating a diverse selection of daily objects, some of which displays dynamic change in shape upon grasping. To address the cost of collecting extensive training datasets, we adopted one-shot learning (OSL) technique with a long short-term memory (LSTM) recurrent neural network. OSL aims to allow the networks to learn based on limited training data. It also promotes the scalability of the network to accommodate more grasping objects in the future. Three types of LSTM-based networks have been developed and their performance has been evaluated in this study. Among the three LSTM networks, triplet network achieved overall stability estimation accuracy at 89.96%, followed by LSTM network with 88.00% and Siamese LSTM network with 85.16%.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3025
Author(s):  
Minh-Quan Tran ◽  
Ahmed S. Zamzam ◽  
Phuong H. Nguyen ◽  
Guus Pemen

The development of active distribution grids requires more accurate and lower computational cost state estimation. In this paper, the authors investigate a decentralized learning-based distribution system state estimation (DSSE) approach for large distribution grids. The proposed approach decomposes the feeder-level DSSE into subarea-level estimation problems that can be solved independently. The proposed method is decentralized pruned physics-aware neural network (D-P2N2). The physical grid topology is used to parsimoniously design the connections between different hidden layers of the D-P2N2. Monte Carlo simulations based on one-year of load consumption data collected from smart meters for a three-phase distribution system power flow are developed to generate the measurement and voltage state data. The IEEE 123-node system is selected as the test network to benchmark the proposed algorithm against the classic weighted least squares and state-of-the-art learning-based DSSE approaches. Numerical results show that the D-P2N2 outperforms the state-of-the-art methods in terms of estimation accuracy and computational efficiency.


2013 ◽  
Vol 313-314 ◽  
pp. 1115-1119
Author(s):  
Yong Qi Wang ◽  
Feng Yang ◽  
Yan Liang ◽  
Quan Pan

In this paper, a novel method based on cubature Kalman filter (CKF) and strong tracking filter (STF) has been proposed for nonlinear state estimation problem. The proposed method is named as strong tracking cubature Kalman filter (STCKF). In the STCKF, a scaling factor derived from STF is added and it can be tuned online to adjust the filtering gain accordingly. Simulation results indicate STCKF outperforms over EKF and CKF in state estimation accuracy.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1526
Author(s):  
Fengjiao Zhang ◽  
Yan Wang ◽  
Jingyu Hu ◽  
Guodong Yin ◽  
Song Chen ◽  
...  

The performance of vehicle active safety systems relies on accurate vehicle state information. Estimation of vehicle state based on onboard sensors has been popular in research due to technical and cost constraints. Although many experts and scholars have made a lot of research efforts for vehicle state estimation, studies that simultaneously consider the effects of noise uncertainty and model parameter perturbation have rarely been reported. In this paper, a comprehensive scheme using dual Extended H-infinity Kalman Filter (EH∞KF) is proposed to estimate vehicle speed, yaw rate, and sideslip angle. A three-degree-of-freedom vehicle dynamics model is first established. Based on the model, the first EH∞KF estimator is used to identify the mass of the vehicle. Simultaneously, the second EH∞KF estimator uses the result of the first estimator to predict the vehicle speed, yaw rate, and sideslip angle. Finally, simulation tests are carried out to demonstrate the effectiveness of the proposed method. The test results indicate that the proposed method has higher estimation accuracy than the extended Kalman filter.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1440
Author(s):  
Yiran Yuan ◽  
Chenglin Wen ◽  
Yiting Qiu ◽  
Xiaohui Sun

There are three state estimation fusion methods for a class of strong nonlinear measurement systems, based on the characteristic function filter, namely the centralized filter, parallel filter, and sequential filter. Under ideal communication conditions, the centralized filter can obtain the best state estimation accuracy, and the parallel filter can simplify centralized calculation complexity and improve feasibility; in addition, the performance of the sequential filter is very close to that of the centralized filter and far better than that of the parallel filter. However, the sequential filter can tolerate non-ideal conditions, such as delay and packet loss, and the first two filters cannot operate normally online for delay and will be invalid for packet loss. The performance of the three designed fusion filters is illustrated by three typical cases, which are all better than that of the most popular Extended Kalman Filter (EKF) performance.


2017 ◽  
Vol 11 (8) ◽  
pp. 1943-1953 ◽  
Author(s):  
Amir Moradifar ◽  
Asghar Akbari Foroud ◽  
Khalil Gorgani Firouzjah

Author(s):  
Zhihui Yang ◽  
Xiangyu Tang ◽  
Lijuan Zhang ◽  
Zhiling Yang

Human pose estimate can be used in action recognition, video surveillance and other fields, which has received a lot of attentions. Since the flexibility of human joints and environmental factors greatly influence pose estimation accuracy, related research is confronted with many challenges. In this paper, we incorporate the pyramid convolution and attention mechanism into the residual block, and introduce a hybrid structure model which synthetically applies the local and global information of the image for the analysis of keypoints detection. In addition, our improved structure model adopts grouped convolution, and the attention module used is lightweight, which will reduce the computational cost of the network. Simulation experiments based on the MS COCO human body keypoints detection data set show that, compared with the Simple Baseline model, our model is similar in parameters and GFLOPs (giga floating-point operations per second), but the performance is better on the detection of accuracy under the multi-person scenes.


2018 ◽  
pp. 35-41 ◽  
Author(s):  
Oxana G. Matviychuk

The state estimation problem for uncertain impulsive control systems with a special structure is considered. The initial states are taken to be unknown but bounded with given bounds. We assume here that the coefficients of the matrix included in the differential equations are not exactly known, but belong to the given compact set in the corresponding space. We present here algorithms that allow to find the external ellipsoidal estimates of reachable sets for such bilinear impulsive uncertain systems.


Sign in / Sign up

Export Citation Format

Share Document