scholarly journals Three State Estimation Fusion Methods Based on the Characteristic Function Filtering

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1440
Author(s):  
Yiran Yuan ◽  
Chenglin Wen ◽  
Yiting Qiu ◽  
Xiaohui Sun

There are three state estimation fusion methods for a class of strong nonlinear measurement systems, based on the characteristic function filter, namely the centralized filter, parallel filter, and sequential filter. Under ideal communication conditions, the centralized filter can obtain the best state estimation accuracy, and the parallel filter can simplify centralized calculation complexity and improve feasibility; in addition, the performance of the sequential filter is very close to that of the centralized filter and far better than that of the parallel filter. However, the sequential filter can tolerate non-ideal conditions, such as delay and packet loss, and the first two filters cannot operate normally online for delay and will be invalid for packet loss. The performance of the three designed fusion filters is illustrated by three typical cases, which are all better than that of the most popular Extended Kalman Filter (EKF) performance.

2013 ◽  
Vol 313-314 ◽  
pp. 1115-1119
Author(s):  
Yong Qi Wang ◽  
Feng Yang ◽  
Yan Liang ◽  
Quan Pan

In this paper, a novel method based on cubature Kalman filter (CKF) and strong tracking filter (STF) has been proposed for nonlinear state estimation problem. The proposed method is named as strong tracking cubature Kalman filter (STCKF). In the STCKF, a scaling factor derived from STF is added and it can be tuned online to adjust the filtering gain accordingly. Simulation results indicate STCKF outperforms over EKF and CKF in state estimation accuracy.


2021 ◽  
Vol 13 (4) ◽  
pp. 803
Author(s):  
Lingchen Lin ◽  
Kunyong Yu ◽  
Xiong Yao ◽  
Yangbo Deng ◽  
Zhenbang Hao ◽  
...  

As a key canopy structure parameter, the estimation method of the Leaf Area Index (LAI) has always attracted attention. To explore a potential method to estimate forest LAI from 3D point cloud at low cost, we took photos from different angles of the drone and set five schemes (O (0°), T15 (15°), T30 (30°), OT15 (0° and 15°) and OT30 (0° and 30°)), which were used to reconstruct 3D point cloud of forest canopy based on photogrammetry. Subsequently, the LAI values and the leaf area distribution in the vertical direction derived from five schemes were calculated based on the voxelized model. Our results show that the serious lack of leaf area in the middle and lower layers determines that the LAI estimate of O is inaccurate. For oblique photogrammetry, schemes with 30° photos always provided better LAI estimates than schemes with 15° photos (T30 better than T15, OT30 better than OT15), mainly reflected in the lower part of the canopy, which is particularly obvious in low-LAI areas. The overall structure of the single-tilt angle scheme (T15, T30) was relatively complete, but the rough point cloud details could not reflect the actual situation of LAI well. Multi-angle schemes (OT15, OT30) provided excellent leaf area estimation (OT15: R2 = 0.8225, RMSE = 0.3334 m2/m2; OT30: R2 = 0.9119, RMSE = 0.1790 m2/m2). OT30 provided the best LAI estimation accuracy at a sub-voxel size of 0.09 m and the best checkpoint accuracy (OT30: RMSE [H] = 0.2917 m, RMSE [V] = 0.1797 m). The results highlight that coupling oblique photography and nadiral photography can be an effective solution to estimate forest LAI.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1526
Author(s):  
Fengjiao Zhang ◽  
Yan Wang ◽  
Jingyu Hu ◽  
Guodong Yin ◽  
Song Chen ◽  
...  

The performance of vehicle active safety systems relies on accurate vehicle state information. Estimation of vehicle state based on onboard sensors has been popular in research due to technical and cost constraints. Although many experts and scholars have made a lot of research efforts for vehicle state estimation, studies that simultaneously consider the effects of noise uncertainty and model parameter perturbation have rarely been reported. In this paper, a comprehensive scheme using dual Extended H-infinity Kalman Filter (EH∞KF) is proposed to estimate vehicle speed, yaw rate, and sideslip angle. A three-degree-of-freedom vehicle dynamics model is first established. Based on the model, the first EH∞KF estimator is used to identify the mass of the vehicle. Simultaneously, the second EH∞KF estimator uses the result of the first estimator to predict the vehicle speed, yaw rate, and sideslip angle. Finally, simulation tests are carried out to demonstrate the effectiveness of the proposed method. The test results indicate that the proposed method has higher estimation accuracy than the extended Kalman filter.


2012 ◽  
Vol 263-266 ◽  
pp. 1160-1164
Author(s):  
Wen Yuan Rao

We study the performance of the three-node relay network. Three combining methods for the Amplify-and-Forward (AF) protocol and the Decode-and-Forward (DF) protocol are compared. Simulations indicate that the AF protocol is better than DF under all these three combining methods. To combine the incoming signals the channel quality should be estimated as accuracy as possible, more estimation accuracy requires more resource. A very simple combining method can obtain the performance comparative with optimal combining methods approximately. At the same time, all three combining methods for both diversity protocols can achieve the maximum diversity order.


2017 ◽  
Vol 11 (8) ◽  
pp. 1943-1953 ◽  
Author(s):  
Amir Moradifar ◽  
Asghar Akbari Foroud ◽  
Khalil Gorgani Firouzjah

2013 ◽  
Vol 732-733 ◽  
pp. 1283-1287
Author(s):  
Jun Liu ◽  
Da Wei Su ◽  
Ke Jun Qian ◽  
Fei Shi ◽  
Li Wen Wang

In this paper, a method of distributed state estimation in dispatch center based on ripe data and bus topology information of substation is proposed. Substation state estimation solves the reliability issues of basic data by means of processing the redundant information in substation side. By using a large amount of data source information of substation, state estimation can be performed efficiently in substation. On the basis of the unified data standard between master center and substation, uploading ripe data and calculation nodes topology structure are acquired in dispatch center level. Data rationality and consistency check of substation improve the state estimation accuracy of topology identification in dispatch master system. And also it provides reliable data for the online analysis software.


Author(s):  
Xiaogang Wang ◽  
Wutao Qin ◽  
Naigang Cui ◽  
Yu Wang

This paper presents a new recursive filter algorithm, the robust high-degree cubature information filter, which can provide reliable state estimation in the presence of non-Gaussian measurement noise. The novel algorithm is developed in the framework of the conventional information filter. The fifth-degree Cubature rule is utilized to improve the estimation accuracy and numerical stability during the time update, while the Huber technique is adopted in the measurements update stage. As the Huber technique is a combined minimum l1 and l2 norm estimation algorithm, the proposed algorithm could exhibit robustness to the non-Gaussian measurement noise, especially the glint noise. In addition, Monte Carlo simulation and the trajectory estimation for ballistic missile experiments demonstrate that the robust high-degree cubature information filter can provide improved state estimation performance over extended information filter and high-degree cubature information filter.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2251 ◽  
Author(s):  
Jikai Liu ◽  
Pengfei Wang ◽  
Fusheng Zha ◽  
Wei Guo ◽  
Zhenyu Jiang ◽  
...  

The motion state of a quadruped robot in operation changes constantly. Due to the drift caused by the accumulative error, the function of the inertial measurement unit (IMU) will be limited. Even though multi-sensor fusion technology is adopted, the quadruped robot will lose its ability to respond to state changes after a while because the gain tends to be constant. To solve this problem, this paper proposes a strong tracking mixed-degree cubature Kalman filter (STMCKF) method. According to system characteristics of the quadruped robot, this method makes fusion estimation of forward kinematics and IMU track. The combination mode of traditional strong tracking cubature Kalman filter (TSTCKF) and strong tracking is improved through demonstration. A new method for calculating fading factor matrix is proposed, which reduces sampling times from three to one, saving significantly calculation time. At the same time, the state estimation accuracy is improved from the third-degree accuracy of Taylor series expansion to fifth-degree accuracy. The proposed algorithm can automatically switch the working mode according to real-time supervision of the motion state and greatly improve the state estimation performance of quadruped robot system, exhibiting strong robustness and excellent real-time performance. Finally, a comparative study of STMCKF and the extended Kalman filter (EKF) that is commonly used in quadruped robot system is carried out. Results show that the method of STMCKF has high estimation accuracy and reliable ability to cope with sudden changes, without significantly increasing the calculation time, indicating the correctness of the algorithm and its great application value in quadruped robot system.


Sign in / Sign up

Export Citation Format

Share Document