scholarly journals Effect of Sm concentration on optical and electrical properties of CdSe nanocrystalline thin film

2019 ◽  
Vol 37 (1) ◽  
pp. 33-38 ◽  
Author(s):  
K.K. Pathak ◽  
Mimi Akash Pateria ◽  
Kusumanjali Deshmukh ◽  
Piyush Jha

AbstractPresent paper reports optical and electrical properties of samarium doped CdSe nanocrystalline thin film which was grown on a glass substrate by chemical bath deposition method (CBD). X-ray diffraction (XRD) analysis revealed that the deposited films were nanocrystalline with sphalerite cubic structure. The average crystallite size calculated from FWHM of XRD peaks was found to be 10.11 nm. The bandgap of the Sm doped CdSe nanocrystalline thin films was calculated to be 1.91 eV to 2.22 eV. The optical absorption edge of undoped (pure) and Sm doped CdSe films was obtained between 650 nm to 640 nm showing blue shift as compared to bulk CdSe. Sm doping further enhanced the photoconductivity of these films. The I-V characteristic confirmed the suitability of prepared films for photosensor applications.

2013 ◽  
Vol 829 ◽  
pp. 332-336
Author(s):  
Soheila Kharratian Khameneh ◽  
M. Heydarzadeh Sohi ◽  
Abolghasem Ataie ◽  
Saeed Mehrizi

A study of the incorporation of barium hexaferrite nanoparticles into a CoFe matrix by means of electrodeposition over brass substrates has been performed. Barium hexaferrite nanoparticles were prepared by co-precipitation route using solution of iron and barium nitrates with a Fe3+/Ba2+molar ratio of 8, by addition of NaOH with a OH-/NO3- molar ratio of 2. X-ray diffraction (XRD) results indicated that in a sample synthesized from aqueous solution and annealed at 900 °C for 1 hour, BaFe12O19 was the dominant phase. Field emission scanning electron microscopy (FE-SEM) showed plate-like particles of barium hexaferrite by mean diameter of 300 nm and thickness of 45 nm. CoFe-BaFe12O19 nanocomposite thin films were then electrodeposited froma Co-Fe bath containing the barium hexaferrite particles obtained in the first stage of this work. Finally, FE-SEM equipped with energy dispersive spectroscopy (EDS) analyzer and XRD analysis was applied on the deposited films, to confirm presence of the nanoparticles in the film. The average crystallite size of the deposits was around 30 nm. It was also noticed that increasing the concentration of the particles in the electroplating bath, caused a rise in the BaFe12O19 content of the deposits but had no significant effect on the composition of the CoFe matrix.


2007 ◽  
Vol 558-559 ◽  
pp. 975-978
Author(s):  
L.V. Tho ◽  
K.E. Lee ◽  
Cheol Gi Kim ◽  
Chong Oh Kim ◽  
W.S. Cho

Nanocrystalline CoFeHfO thin films have been fabricated by RF sputtering method. Co52Fe23Hf10O15 thin film is observed, exhibit good magnetic properties with magnetic coercivity (Hc) of 0.18 Oe; anisotropy fild (Hk) of 49 Oe; saturation magnetization (4лMs) of 21 kG, and electrical resistivity (ρ) of 300 01cm. The frequency response of permeability of the film is excellent. The effect of microstructure on the electrical and magnetic properties of thin film was studied using X-ray diffraction (XRD) analysis and conventional transmission electron microscopy (TEM). The results showed that excellent soft magnetic properties were associated with granular nannoscale grains of α-CoFe and α-Co(Fe) phases.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Peijie Lin ◽  
Sile Lin ◽  
Shuying Cheng ◽  
Jing Ma ◽  
Yunfeng Lai ◽  
...  

Ag-doped In2S3(In2S3:Ag) thin films have been deposited onto glass substrates by a thermal evaporation method. Ag concentration is varied from 0 at.% to 4.78 at.%. The structural, optical, and electrical properties are characterized using X-ray diffraction (XRD), spectrophotometer, and Hall measurement system, respectively. The XRD analysis confirms the existence of In2S3and AgIn5S8phases. With the increase of the Ag concentration, the band gap of the films is decreased gradually from 2.82 eV to 2.69 eV and the resistivity drastically is decreased from ~103to5.478×10-2 Ω·cm.


2019 ◽  
Vol 11 (20) ◽  
pp. 68-74
Author(s):  
Jamal. F. Mohammad

Cadmium sulfide (CdS) nanocrystalline thin films have been prepared by chemical bath deposition (CBD) technique on commercial glass substrates at 70ºC temperature. Cadmium chloride (CdCl2) as a source of cadmium (Cd), thiourea (CS(NH2)2) as a source of sulfur and ammonia solution (NH4OH) were added to maintain the pH value of the solution at 10. The characterization of thin films was carried out through the structural and optical properties by X-ray diffraction (XRD) and UV-VIS spectroscopy. A UV-VIS optical spectroscopy study was carried out to determine the band gap of the nanocrystalline CdS thin film and it showed a blue shift with respect to the bulk value (from 3.9 - 2.4eV). In present work effects of thickness on the structural and optical properties of CdS nanocrystalline thin films were discussed.


Sign in / Sign up

Export Citation Format

Share Document