scholarly journals POSSIBILITY OF THE SPECTROPHOTOMETRIC DETERMINATION OF EUROPIUM BY MEANS OF ARSENAZO III

2013 ◽  
Vol 12 (2) ◽  
pp. 93-99 ◽  
Author(s):  
Jozef Uhrovčík ◽  
Monika Gyeváthová ◽  
Juraj Lesný

Abstract The concentration of Eu(III) cations in model aqueous solutions can be quantified by means of Arsenazo III reagent. Absorbance of the solution was measured at the wavelength λmax = 655 nm. Molar absorptivity reached the value ε655 = 5.5±0.2 · 104 cm-1 mol-1 · dm3. Beer's law was obeyed in the range from 0 to 2 mg · dm-3 Eu(III). The value of limit of detection was established by application of 3σ approach and reached the value of 20.9 μg · dm-3. Repeatability of analysis expressed by relative standard deviation does not exceed the value of ± 8% and apparent recovery lay in acceptable range from 91 to 106 %. Stoichiometry between Eu(III) and Arsenazo III in media of relevant solution was 1:1. The absorbance of the solutions within the linear range of the proposed method maintained a constant value for 60 minutes. Described procedure can be utilized to determination of Eu(III) concentration in real samples, but it is necessary eliminate interfering ions. Cations like La(III), Sm(III), Th(IV), U(VI) and complexing agent EDTA cause significant error at the determination of Eu(III) in model solution. Presented spectrophotometric method could be applied for the determination of europium in the minerals and water samples, however after a suitable separation and preconcentration of target analyte.

2013 ◽  
Vol 10 (3) ◽  
pp. 986-996
Author(s):  
Baghdad Science Journal

A simple , sensitive and accurate spectrophotometric method for the trace determination of bismuth (III) has been developed .This method is based on the reaction of bismuth (III) with arsenazo(III) in acid solution (pH=1.9) to form a blue water soluble complex which exhibits maximum absorption at 612nm .Beer's law is obeyed over the concentration range of 2-85 ?g bismuth (III) in a final volume of 20 mL( i.e. 0.1 – 4.25?g.mL-1) with a correlation coefficient of (0.9981) and molar absorptivity 1.9×104 L.mol-1.cm-1 . The limit of detection (LOD) and the limit of quantification (LOQ) are 0.0633 and 0.0847 ?g.mL-1 , respectively . Under optimum conditions,the stoichiometry of the reaction between bismuth (III) and arsenazo(III) reagent was found to be 1:2. The recoveries were obtained in the range of 98.9 - 100.0% and a relative standard deviation of ±0.59 to ±2.73% depending on the concentration level of bismuth. The effect of interferences by a number of common cations and anions in the presence of composite mixture has been studied .The proposed method has been applied successfully for determination of bismuth in water samples and veterinary preparation .


2009 ◽  
Vol 6 (4) ◽  
pp. 1077-1084 ◽  
Author(s):  
Mohammad Reza Jamali ◽  
Yaghoub Assadi ◽  
Reyhaneh Rahnama Kozani ◽  
Farzaneh Shemirani

A simple and effective homogeneous liquid-liquid extraction method for selective separation, preconcentration and spectrophotometric determination of palladium(II) ion was developed by using a ternary component system (water / tetrabutylammonium ion (TBA+) / chloroform). The phase separation phenomenon occurred by an ion–pair formation of TBA+and perchlorate ion. Thio-Michler’s ketone (TMK), 4, 4ˊ-bis (dimethylamino) thiobenzophenone, was used as a complexing agent. After optimization of complexation and extraction conditions ([TMK]=5.0x10-2mol L-1, [TBA+] = 2.0×10-2mol L-1, [CHCl3] = 60.0 µL, [ClO4-] = 2.5×10-2mol L-1and pH= 3.0), a preconcentration factor 10 was obtained for 10 mL of sample. The analytical curve was linear in the range of 2-100 ng mL-1and the limit of detection was 0.4 ng mL-1. The relative standard deviation was 3.2% (n=10). Accuracy and application of the method was estimated by using test samples of natural and synthetic water spiked with different amounts of palladium(II) ion. The method is very simple and inexpensive.


2011 ◽  
Vol 8 (4) ◽  
pp. 1528-1535 ◽  
Author(s):  
F. Nekouei ◽  
Sh. Nekouei

A simple, fast, reproducible and sensitive method for the flotation- spectrophotometric determination of Al3+is reported. The apparent molar absorptivity (ε) of the ion associate was determined to be 8.35×104L mol-1cm-1. The calibration curve was linear in the concentration range of 1.0-50 ng mL-1of Al3+with a correlation coefficient of 0.9997. The limit of detection (LOD) was 0.621 ng mL. The relative standard deviation (RSD) at 10 and 30 ng mL-1of aluminium were 1.580 and 2.410% (n=7) respectively. The method was applied for measuring the amount of aluminium in water samples.


2013 ◽  
Vol 800 ◽  
pp. 166-172
Author(s):  
Xiong Zhi Wu ◽  
Li Li ◽  
Fei Ping Li ◽  
Wen Ying Jin

A new sorbent (PAMAM4.0GASG) with gallic acid as functional group has been prepared based on G4.0 polyamidoamine dendrimer modified silica gel (PAMAM4.0SG) and characterized with FTIR. It was employed for selective separation, preconcentration and determination of lead in different samples by flame atomic absorption spectrometry (FAAS). Experimental conditions for effective separation and preconcentration of lead were optimized. The preconcentration factor reaches 200 for lead. The relative standard deviation (R.S.D.) under optimum conditions was 2.1% for 5.0 μg ml1 of Pb (II).The relative standard deviation (R.S.D.) was 2.1% for 5.0 μg ml1 of Pb (II). The limit of detection (LOD) of 0.081μg ml1 was achieved with a sample loading flow rate of 4.2 ml min1 and a 10 ml sample volume in the proposed method. The proposed column enrichment method was applied for the preconcentration/separation and determination of Pb (II) in tap water and river water samples successfully.


2019 ◽  
Vol 53 (4) ◽  
Author(s):  
Padmarajaiah Nagaraja ◽  
Naef Ghllab Saeed Al-Tayar ◽  
Anantharaman Shivakumar ◽  
Ashwinee Kumar Shresta ◽  
Avinash K. Gowda

A very simple, sensitive and fairly selective direct spectrophotometric method is presented for the rapid determination of thallium(III) at trace level. The method is based on the oxidation of 2-hydrazono-3-methyl-2,3-dihydrobenzo[d]thiazole hydrochloride (MBTH) by thallium(III) in phosphoric acid medium to form a diazoniumcation, which couples immediately with 10,11-dihydro-5Hdibenzo[b,f]azepine (IDB) at room temperature giving a blue colored species having a maximum absorption at 660 nm. The reaction conditions and other important analytical parameters were optimized.The calibration curve was found to be linear over the range of 0.1-4 μg/mL with molar absorptivity of 4.5 × 104 L mol- cm-1 and Sandell’s sensitivity of 0.00454 μg cm-2. The relative standard deviation and limit of detection have been found to be 0.58% and 0.0147 μg/mL respectively. Almost all common anions and cations are found notto interfering in matrix level of the analytical process. The method has been successfully applied for the determination of thallium(III) in synthetic standard mixtures, water and human urine samples. The performance of proposed method was evaluated in terms of student’s t-test and variance ratio F-test, to find out the significance of proposed method over the reported methods.    


2020 ◽  
Vol 32 (6) ◽  
pp. 1314-1320
Author(s):  
Lamya A. Sarsam ◽  
Salim A. Mohammed ◽  
Sahar A. Fathe

A rapid, simple and sensitive spectrophotometric and RP-HPLC methods have been developed for the quantitative determination of cefotaxime-Na in both pure and dosage forms. The spectrophotometric method was based on diazotization of cefotaxime-Na and then coupling with 8-hydroxyquinoline in an alkaline medium. The resulting azo dye exhibited maximum absorption at 551 nm with a molar absorptivity of 0.597 × 104 L mol-1 cm-1. Beer′s law was obeyed over the range 10-700 μg/25 mL (i.e. 0.4-28.0 ppm) with an excellent determination coefficient (R2 = 0.9993). The limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.0194 and 0.3765 μg mL-1, respectively. The recoveries were obtained in the range 97.3-102.5% and the relative standard deviation (RSD) was better than ± 1.56. The HPLC method has been developed for the determination of cefotaxime-Na. The analysis were carried out on a C18 column and a mobile phase composed of acetonitrile and phosphate buffer solution (0.024M KH2PO4 and 0.01M H3PO4) at pH 3.5 in the ratio of 60:40 (v:v), with a flow rate of 1.0 mL min-1 and UV detection at 258 nm. The proposed method showed good linearity (in a range of concentration 1.0-200 μg mL-1. The recovery percent and a relative standard deviations were found in the range 96 to 104.8% and ± 0.017 to ± 0.031%, respectively. Both methods were applied successfully to the assay of cefotaxime-Na in commercial injection preparations.


2011 ◽  
Vol 17 (3) ◽  
pp. 259-267 ◽  
Author(s):  
Nagaraju Rajendraprasad ◽  
Kanakapura Basavaiahf ◽  
Basavaiah Vinay

Quetiapine fumarate (QTF) is an antipsychotic drug belonging to the benzisoxazole derivatives indicated for the treatment of schizophrenia. A sensitive and selective method based on dichloromethane-extractable ion-pair of QTF with calmagite (CGT), which exhibited an absorption maximum at 490 nm, is described. At this wavelength, Beer?s law is obeyed over the concentration range of 3.0 - 30.0 ?g ml-1. The apparent molar absorptivity, limit of detection (LOD) and quantitation (LOQ) values are 1.32 ? 104 l mol-1 cm-1, 0.27 and 0.81 ?g ml-1 respectively. The reaction is extremely rapid at room temperature and the absorbance values remain unchanged upto 19 h. The precision results, expressed as intra-day and inter-day relative standard deviation values, are satisfactory (RSD ? 2.2%). The accuracy is satisfactory as well (RE ? 2.44%). The method was successfully applied to the determination of QTF in pharmaceuticals and spiked human urine with satisfactory results. No interference was observed from common pharmaceutical adjuvants in tablets. Statistical comparison of the results with official method showed an excellent agreement and indicated no significant difference in precision.


2015 ◽  
Vol 69 (4) ◽  
Author(s):  
Teodora S. Stefanova ◽  
Kiril K. Simitchiev ◽  
Kiril B. Gavazov

AbstractLiquid-liquid extraction (LLE) and cloud point extraction (CPE) of vanadium(V) ternary complexes with 4-(2-pyridylazo)resorcinol (PAR) and 2,3,5-triphenyl-2H-tetrazolum chloride (TTC) were investigated. The optimal conditions for vanadium extraction and spectrophotometric determination were identified. The composition (V : PAR : TTC) of the extracted species was 1 : 2 : 3 (optimal conditions; LLE), 2 : 2 : 2 (low reagents concentrations; LLE), 1 : 1 : 1 (short heating time; CPE), and 1 : 1 : 1 + 1 : 1 : 0 (optimal extraction conditions; CPE). LLE, performed in the presence of 1,2-diaminocyclohexane-N,N,N’,N’-tetraacetic acid and NH4F as masking agents, afforded the sensitive, selective, precise, and inexpensive spectrophotometric determination of vanadium. The absorption maximum, molar absorptivity, limit of detection, and linear working range were 559 nm, 1.95 × 105 dm3 mol−1 cm−1, 0.7 ng cm−3, and 2.2-510 ng cm−3, respectively. The procedure thus developed was applied to the analysis of drinking waters and steels. The relative standard deviations for V(V) determination were below 9.4 % (4-6 × 10−7 mass %; water samples) and 2.12 % (1-3 mass %; steel samples).


2009 ◽  
Vol 63 (3) ◽  
Author(s):  
Muberra Andac ◽  
Adem Asan ◽  
Ibrahim Isildak

AbstractA simple and rapid flow-injection spectrophotometric method for the determination of iron(III) and total iron is proposed. The method is based on the reaction between iron(III) and O-acetylsalicylhydroxamic acid (AcSHA) in a 2 % methanol solution resulting in an intense violet complex with strong absorption at 475 nm. Optimum conditions for the determination of iron(III) and the interfering ions were tested. The relative standard deviation for the determination of 5 μg L−1 iron(III) was 0.85 % (n = 10), and the limit of detection (blank signal plus three times the standard deviation of the blank) was 0.5 μg L−1, both based on the injection volumes of 20 μL. The method was successfully applied in the determination of iron(III) and total iron in water and ore samples. The method was verified by analysing a certified reference material Zn/Al/Cu 43XZ3F and also by the AAS method.


2020 ◽  
Vol 11 (4) ◽  
pp. 291-297
Author(s):  
Hutaf Mustafa Baker ◽  
Hussam Ahmad Alsaoud ◽  
Hamzeh Mohamad Abdel-Halim

A simple, sensitive and reproducible method for the determination of ranitidine hydrochloride in pharmaceutical preparations was investigated. This spectrophotometric method was based on the formation of a deep red color product with ninhydrin in basic media and the absorbance measured at λmax = 480 nm. The reaction occurs at 45 °C with pH = 10 having a contact time of 38 minutes. Under the optimum conditions, Beer’s Law is obeyed in the concentration range of 8.98×103 - 9.90×104 µg/L. The coefficient of correlation was found to be 0.999 for the obtained method with molar absorptivity of 3.05×103 L/mol.cm. The calculated Sandell’s sensitivity is 0.108 μg/cm2. The limit of detection and limit of quantification are 0.0997 and 0.3023 µg/mL, respectively. The low values of the percentage relative standard deviation and percentage relative error indicate the high precision and the good accuracy of the proposed method. The stoichiometry of the reaction is determined and found to be 1:4 (Ranitidine hydrochloride:Ninhydrin). The initial rate method confirmed that this reaction is first order one.


Sign in / Sign up

Export Citation Format

Share Document