scholarly journals MLEFlow: Learning from History to Improve Load Balancing in Tor

2021 ◽  
Vol 2022 (1) ◽  
pp. 75-104
Author(s):  
Hussein Darir ◽  
Hussein Sibai ◽  
Chin-Yu Cheng ◽  
Nikita Borisov ◽  
Geir Dullerud ◽  
...  

Abstract Tor has millions of daily users seeking privacy while browsing the Internet. It has thousands of relays to route users’ packets while anonymizing their sources and destinations. Users choose relays to forward their traffic according to probability distributions published by the Tor authorities. The authorities generate these probability distributions based on estimates of the capacities of the relays. They compute these estimates based on the bandwidths of probes sent to the relays. These estimates are necessary for better load balancing. Unfortunately, current methods fall short of providing accurate estimates leaving the network underutilized and its capacities unfairly distributed between the users’ paths. We present MLEFlow, a maximum likelihood approach for estimating relay capacities for optimal load balancing in Tor. We show that MLEFlow generalizes a version of Tor capacity estimation, TorFlow-P, by making better use of measurement history. We prove that the mean of our estimate converges to a small interval around the actual capacities, while the variance converges to zero. We present two versions of MLEFlow: MLEFlow-CF, a closed-form approximation of the MLE and MLEFlow-Q, a discretization and iterative approximation of the MLE which can account for noisy observations. We demonstrate the practical benefits of MLEFlow by simulating it using a flow-based Python simulator of a full Tor network and packet-based Shadow simulation of a scaled down version. In our simulations MLEFlow provides significantly more accurate estimates, which result in improved user performance, with median download speeds increasing by 30%.

2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Carlos Amendola ◽  
Jean-Charles Faugere ◽  
Bernd Sturmfels

The points of a moment variety are the vectors of all moments up to some order, for a givenfamily of probability distributions. We study the moment varieties for mixtures of multivariate Gaussians.Following up on Pearson's classical work from 1894, we apply current tools from computational algebrato recover the parameters from the moments. Our moment varieties extend objects familiar to algebraicgeometers. For instance, the secant varieties of Veronese varieties are the loci obtained by setting allcovariance matrices to zero. We compute the ideals of the 5-dimensional moment varieties representingmixtures of two univariate Gaussians, and we oer a comparison to the maximum likelihood approach.


1997 ◽  
Vol 161 ◽  
pp. 197-201 ◽  
Author(s):  
Duncan Steel

AbstractWhilst lithopanspermia depends upon massive impacts occurring at a speed above some limit, the intact delivery of organic chemicals or other volatiles to a planet requires the impact speed to be below some other limit such that a significant fraction of that material escapes destruction. Thus the two opposite ends of the impact speed distributions are the regions of interest in the bioastronomical context, whereas much modelling work on impacts delivers, or makes use of, only the mean speed. Here the probability distributions of impact speeds upon Mars are calculated for (i) the orbital distribution of known asteroids; and (ii) the expected distribution of near-parabolic cometary orbits. It is found that cometary impacts are far more likely to eject rocks from Mars (over 99 percent of the cometary impacts are at speeds above 20 km/sec, but at most 5 percent of the asteroidal impacts); paradoxically, the objects impacting at speeds low enough to make organic/volatile survival possible (the asteroids) are those which are depleted in such species.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 457
Author(s):  
Isabel María Introzzi ◽  
María Marta Richard’s ◽  
Yesica Aydmune ◽  
Eliana Vanesa Zamora ◽  
Florencia Stelzer ◽  
...  

Recent studies suggest that the developmental curves in adolescence, related to the development of executive functions, could be fitted to a non-linear trajectory of development with progressions and retrogressions. Therefore, the present study proposes to analyze the pattern of development in Perceptual Inhibition (PI), considering all stages of adolescence (early, middle, and late) in intervals of one year. To this aim, we worked with a sample of 275 participants between 10 and 25 years, who performed a joint visual and search task (to measure PI). We have fitted ex-Gaussian functions to the probability distributions of the mean response time across the sample and performed a covariance analysis (ANCOVA). The results showed that the 10- to 13-year-old groups performed similarly in the task and differ from the 14- to 19-year-old participants. We found significant differences between the older group and all the rest of the groups. We discuss the important changes that can be observed in relation to the nonlinear trajectory of development that would show the PI during adolescence.


Author(s):  
Yong Sul Won ◽  
Jong-Hoon Kim ◽  
Chi Young Ahn ◽  
Hyojung Lee

While the coronavirus disease 2019 (COVID-19) outbreak has been ongoing in Korea since January 2020, there were limited transmissions during the early stages of the outbreak. In the present study, we aimed to provide a statistical characterization of COVID-19 transmissions that led to this small outbreak. We collated the individual data of the first 28 confirmed cases reported from 20 January to 10 February 2020. We estimated key epidemiological parameters such as reporting delay (i.e., time from symptom onset to confirmation), incubation period, and serial interval by fitting probability distributions to the data based on the maximum likelihood estimation. We also estimated the basic reproduction number (R0) using the renewal equation, which allows for the transmissibility to differ between imported and locally transmitted cases. There were 16 imported and 12 locally transmitted cases, and secondary transmissions per case were higher for the imported cases than the locally transmitted cases (nine vs. three cases). The mean reporting delays were estimated to be 6.76 days (95% CI: 4.53, 9.28) and 2.57 days (95% CI: 1.57, 4.23) for imported and locally transmitted cases, respectively. The mean incubation period was estimated to be 5.53 days (95% CI: 3.98, 8.09) and was shorter than the mean serial interval of 6.45 days (95% CI: 4.32, 9.65). The R0 was estimated to be 0.40 (95% CI: 0.16, 0.99), accounting for the local and imported cases. The fewer secondary cases and shorter reporting delays for the locally transmitted cases suggest that contact tracing of imported cases was effective at reducing further transmissions, which helped to keep R0 below one and the overall transmissions small.


Sign in / Sign up

Export Citation Format

Share Document