scholarly journals Subcritical Transmission in the Early Stage of COVID-19 in Korea

Author(s):  
Yong Sul Won ◽  
Jong-Hoon Kim ◽  
Chi Young Ahn ◽  
Hyojung Lee

While the coronavirus disease 2019 (COVID-19) outbreak has been ongoing in Korea since January 2020, there were limited transmissions during the early stages of the outbreak. In the present study, we aimed to provide a statistical characterization of COVID-19 transmissions that led to this small outbreak. We collated the individual data of the first 28 confirmed cases reported from 20 January to 10 February 2020. We estimated key epidemiological parameters such as reporting delay (i.e., time from symptom onset to confirmation), incubation period, and serial interval by fitting probability distributions to the data based on the maximum likelihood estimation. We also estimated the basic reproduction number (R0) using the renewal equation, which allows for the transmissibility to differ between imported and locally transmitted cases. There were 16 imported and 12 locally transmitted cases, and secondary transmissions per case were higher for the imported cases than the locally transmitted cases (nine vs. three cases). The mean reporting delays were estimated to be 6.76 days (95% CI: 4.53, 9.28) and 2.57 days (95% CI: 1.57, 4.23) for imported and locally transmitted cases, respectively. The mean incubation period was estimated to be 5.53 days (95% CI: 3.98, 8.09) and was shorter than the mean serial interval of 6.45 days (95% CI: 4.32, 9.65). The R0 was estimated to be 0.40 (95% CI: 0.16, 0.99), accounting for the local and imported cases. The fewer secondary cases and shorter reporting delays for the locally transmitted cases suggest that contact tracing of imported cases was effective at reducing further transmissions, which helped to keep R0 below one and the overall transmissions small.

Author(s):  
Valentina Viego ◽  
Milva Geri ◽  
Juan Castiglia ◽  
Ezequiel Jouglard

AbstractObjectiveTo estimate the incubation period and the serial interval of Covid-19 from a sample of symptomatic patients in Bahia Blanca city.MethodsWe collected dates of illness onset for primary cases (infectors) and secondary cases (infectees) for the first 18 secondary patients infected with SARS-Cov-2 in Bahia Blanca (Argentina). We ranked the fiability of the data depending upon certainty about the identification of the infector and the date of exposition to infector.The sample has some missing values. In the case of incubation, as 3 patients were infected by other household members, we only have 15 observations with an observed date of exposition. For the estimation of serial interval, one patient became ill from close contact with an asymptomatic infectious. Also, estimations of both the incubation period and the serial interval were carried using the full sample and a subsample with higher certainty about the transmissor and date of exposition. By the time the dataset was prepared all infectors were recovered so estimations do need to take into account right censoring.ResultsThe mean incubation period for symptomatic patients is 7.9 days (95% CI: 4.6, 11.1) considering the sample of 15 cases patients and 7.5 days (95% CI: 4.1, 10.9) if the sample is restricted to the most certain cases (n=12). The median is 6.1 (95% CI: 4.1, 9.2) and 5.8 (95% CI: 3.6, 9.3) respectively. Moreover, 97.5% of symptomatic cases will develop symptoms afert 13.6 days from exposition (95% CI 10.7, 16.5).The point estimation for the mean serial interval is 6.8 days (95% CI: 4.0-9.6). Considering only the most certain pairs, the mean serial interval is estimated at 5.5 days (95% CI: 2.8, 8.1). The estimated median serial intervals were 5.2 (95% CI: 3.0, 8.1) and 4.1 (95% CI: 2.0, 6.9) days respectively.ConclusionsEvidence from Bahia Blanca (Argentina) suggests that the median and mean serial interval of Covid-19 is shorter than the incubation period. This suggests that a pre-symptomatic transmission is not negligible. Comparisons with foreign estimates show that incubation period and serial interval could be longer in Bahia Blanca city than in other regions. That poses a signal of opportunity to attain more timely contact tracing and effective isolation.HighlightsWe estimate the incubation period in a sample of 15 symptomatic patients with Covid-19 in Bahia Blanca city (Argentina).We estimate the serial interval for Covid-19 infections in a sample of 17 infector-infectee pairs detected in Bahia Blanca city (Argentina).The median serial interval is lower to the median incubation period, suggesting a transmission is taking place also during the pre-symptomatic phase.The incubation period and serial interval of Covid-19 in Bahía Blanca city seem to take more days than in Asian regions. This finding slows down the pace of health assistance to patients (conditional to public interventions).Longer serial intervals help in tracing contacts and show relative slow turnover of case generations. At the same time, if symptoms take longer time to emerge, long serial intervals may also increase the reproductive number if contact tracing and effective isolation measures are placed untimely.


2020 ◽  
Vol 148 ◽  
Author(s):  
Lin Yang ◽  
Jingyi Dai ◽  
Jun Zhao ◽  
Yunfu Wang ◽  
Pingji Deng ◽  
...  

Abstract A novel coronavirus disease, designated as COVID-19, has become a pandemic worldwide. This study aims to estimate the incubation period and serial interval of COVID-19. We collected contact tracing data in a municipality in Hubei province during a full outbreak period. The date of infection and infector–infectee pairs were inferred from the history of travel in Wuhan or exposed to confirmed cases. The incubation periods and serial intervals were estimated using parametric accelerated failure time models, accounting for interval censoring of the exposures. Our estimated median incubation period of COVID-19 is 5.4 days (bootstrapped 95% confidence interval (CI) 4.8–6.0), and the 2.5th and 97.5th percentiles are 1 and 15 days, respectively; while the estimated serial interval of COVID-19 falls within the range of −4 to 13 days with 95% confidence and has a median of 4.6 days (95% CI 3.7–5.5). Ninety-five per cent of symptomatic cases showed symptoms by 13.7 days (95% CI 12.5–14.9). The incubation periods and serial intervals were not significantly different between male and female, and among age groups. Our results suggest a considerable proportion of secondary transmission occurred prior to symptom onset. And the current practice of 14-day quarantine period in many regions is reasonable.


2020 ◽  
Vol 148 ◽  
Author(s):  
Wei Qin ◽  
Jie Sun ◽  
Pengpeng Xu ◽  
Tianqi Gong ◽  
Xiude Li ◽  
...  

Abstract Hubei province in China has had the most confirmed coronavirus disease 2019 (COVID-19) cases and has reported sustained transmission of the disease. Although Lu'an city is adjacent to Hubei province, its community transmission was blocked at the early stage, and the impact of the epidemic was limited. Therefore, we summarised the overall characteristics of the entire epidemic course in Lu'an to help cities with a few imported cases better contain the epidemic. A total of 69 confirmed COVID-19 cases and 11 asymptomatic carriers were identified in Lu'an during the epidemic from 12 January to 21 February 2020. Fifty-two (65.0%) cases were male, and the median age was 40 years. On admission, 56.5% of cases had a fever as the initial symptom, and pneumonia was present in 89.9% of cases. The mean serial interval and the mean duration of hospitalisation were 6.5 days (95% CI: 4.8–8.2) and 18.2 days (95% CI: 16.8–19.5), respectively. A total of 16 clusters involving 60 cases (17 first-generation cases and 43 secondary cases) were reported during the epidemic. We observed that only 18.9% (7/37) index cases resulted in community transmission during the epidemic in Lu'an, indicating that the scale of the epidemic was limited to a low level in Lu'an city. An asymptomatic carrier caused the largest cluster, involving 13 cases. Spread of COVID-19 by asymptomatic carriers represents an enormous challenge for countries responding to the pandemic.


Author(s):  
Weituo Zhang

AbstractWe estimated the fraction and timing of presymptomatic transmissions of COVID19 with mathematical models combining the available data of the incubation period and serial interval. We found that up to 79.7% transmissions could be presymptomatic among the imported cases in China outside Wuhan. The average timing of presymptomatic transmissions is 3.8 days (SD = 6.1) before the symptom onset, which is much earlier than previously assumed.


Author(s):  
Ganyani Tapiwa ◽  
Kremer Cécile ◽  
Chen Dongxuan ◽  
Torneri Andrea ◽  
Faes Christel ◽  
...  

AbstractBackgroundEstimating key infectious disease parameters from the COVID-19 outbreak is quintessential for modelling studies and guiding intervention strategies. Whereas different estimates for the incubation period distribution and the serial interval distribution have been reported, estimates of the generation interval for COVID-19 have not been provided.MethodsWe used outbreak data from clusters in Singapore and Tianjin, China to estimate the generation interval from symptom onset data while acknowledging uncertainty about the incubation period distribution and the underlying transmission network. From those estimates we obtained the proportions pre-symptomatic transmission and reproduction numbers.ResultsThe mean generation interval was 5.20 (95%CI 3.78-6.78) days for Singapore and 3.95 (95%CI 3.01-4.91) days for Tianjin, China when relying on a previously reported incubation period with mean 5.2 and SD 2.8 days. The proportion of pre-symptomatic transmission was 48% (95%CI 32-67%) for Singapore and 62% (95%CI 50-76%) for Tianjin, China. Estimates of the reproduction number based on the generation interval distribution were slightly higher than those based on the serial interval distribution.ConclusionsEstimating generation and serial interval distributions from outbreak data requires careful investigation of the underlying transmission network. Detailed contact tracing information is essential for correctly estimating these quantities.


Author(s):  
Lauren C. Tindale ◽  
Michelle Coombe ◽  
Jessica E. Stockdale ◽  
Emma S. Garlock ◽  
Wing Yin Venus Lau ◽  
...  

AbstractBackgroundAs the COVID-19 epidemic is spreading, incoming data allows us to quantify values of key variables that determine the transmission and the effort required to control the epidemic. We determine the incubation period and serial interval distribution for transmission clusters in Singapore and in Tianjin. We infer the basic reproduction number and identify the extent of pre-symptomatic transmission.MethodsWe collected outbreak information from Singapore and Tianjin, China, reported from Jan.19-Feb.26 and Jan.21-Feb.27, respectively. We estimated incubation periods and serial intervals in both populations.ResultsThe mean incubation period was 7.1 (6.13, 8.25) days for Singapore and 9 (7.92, 10.2) days for Tianjin. Both datasets had shorter incubation periods for earlier-occurring cases. The mean serial interval was 4.56 (2.69, 6.42) days for Singapore and 4.22 (3.43, 5.01) for Tianjin. We inferred that early in the outbreaks, infection was transmitted on average 2.55 and 2.89 days before symptom onset (Singapore, Tianjin). The estimated basic reproduction number for Singapore was 1.97 (1.45, 2.48) secondary cases per infective; for Tianjin it was 1.87 (1.65, 2.09) secondary cases per infective.ConclusionsEstimated serial intervals are shorter than incubation periods in both Singapore and Tianjin, suggesting that pre-symptomatic transmission is occurring. Shorter serial intervals lead to lower estimates of R0, which suggest that half of all secondary infections should be prevented to control spread.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Lauren C Tindale ◽  
Jessica E Stockdale ◽  
Michelle Coombe ◽  
Emma S Garlock ◽  
Wing Yin Venus Lau ◽  
...  

We collated contact tracing data from COVID-19 clusters in Singapore and Tianjin, China and estimated the extent of pre-symptomatic transmission by estimating incubation periods and serial intervals. The mean incubation periods accounting for intermediate cases were 4.91 days (95%CI 4.35, 5.69) and 7.54 (95%CI 6.76, 8.56) days for Singapore and Tianjin, respectively. The mean serial interval was 4.17 (95%CI 2.44, 5.89) and 4.31 (95%CI 2.91, 5.72) days (Singapore, Tianjin). The serial intervals are shorter than incubation periods, suggesting that pre-symptomatic transmission may occur in a large proportion of transmission events (0.4–0.5 in Singapore and 0.6–0.8 in Tianjin, in our analysis with intermediate cases, and more without intermediates). Given the evidence for pre-symptomatic transmission, it is vital that even individuals who appear healthy abide by public health measures to control COVID-19.


Author(s):  
Jagan K. Baskaradoss ◽  
Aishah Alsumait ◽  
Shaheer Malik ◽  
Jitendra Ariga ◽  
Amrita Geevarghese ◽  
...  

Background: The coronavirus disease 2019 (COVID-19) pandemic has rapidly spread to most countries around the world. Disproportionate spread of COVID-19 among the Indian community in Kuwait prompted heightened surveillance in this community. Aims: To study the epidemiological characteristics of COVID-19 patients and their contacts among the Indian community in Kuwait. Methods: Data collection was done as a part of contact tracing efforts undertaken by the Kuwaiti Ministry of Health. Results: We analysed contact-tracing data for the initial 1348 laboratory-confirmed Indian patients and 6357 contacts (5681 close and 676 casual). The mean (standard deviation) age of the patients was 39.43 (10.5) years and 76.5% of the cases were asymptomatic or had only mild symptoms. Asymptomatic patients were significantly older [40.05 (10.42) years] than patients with severe symptoms [37.54 (10.54) years] (P = 0.024). About 70% of the patients were living in shared accommodation. Most of the close contacts were living in the same household, as compared with casual contacts, who were primarily workplace contacts (P < 0.001). Among the different occupations, healthcare workers had the highest proportion of cases (18.4%). Among the 216 pairs of cases with a clear relationship between the index and secondary cases, the mean serial interval was estimated to be 3.89 (3.69) days, with a median of 3 and interquartile range of 1–5 days. Conclusion: An early increase in the number of COVID-19 cases among the Indian community could be primarily attributed to crowded living conditions and the high proportion of healthcare workers in this community.


2021 ◽  
Vol 12 (2) ◽  
pp. 65-81
Author(s):  
Keeley Allen ◽  
Ame Elizabeth Parry ◽  
Kathryn Glass

Background: The emergence of a new pathogen requires a rapid assessment of its transmissibility, to inform appropriate public health interventions. Methods: The peer-reviewed literature published between 1 January and 30 April 2020 on COVID-19 in PubMed was searched. Estimates of the incubation period, serial interval and reproduction number for COVID-19 were obtained and compared. Results: A total of 86 studies met the inclusion criteria. Of these, 33 estimated the mean incubation period (4–7 days) and 15 included estimates of the serial interval (mean 4–8 days; median length 4–5 days). Fifty-two studies estimated the reproduction number. Although reproduction number estimates ranged from 0.3 to 14.8, in 33 studies (63%), they fell between 2 and 3. Discussion: Studies calculating the incubation period and effective reproduction number were published from the beginning of the pandemic until the end of the study period (30 April 2020); however, most of the studies calculating the serial interval were published in April 2020. The calculated incubation period was similar over the study period and in different settings, whereas estimates of the serial interval and effective reproduction number were setting-specific. Estimates of the serial interval were shorter at the end of the study period as increasing evidence of pre-symptomatic transmission was documented and as jurisdictions enacted outbreak control measures. Estimates of the effective reproduction number varied with the setting and the underlying model assumptions. Early analysis of epidemic parameters provides vital information to inform the outbreak response.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Muluneh Alene ◽  
Leltework Yismaw ◽  
Moges Agazhe Assemie ◽  
Daniel Bekele Ketema ◽  
Wodaje Gietaneh ◽  
...  

Abstract Background Understanding the epidemiological parameters that determine the transmission dynamics of COVID-19 is essential for public health intervention. Globally, a number of studies were conducted to estimate the average serial interval and incubation period of COVID-19. Combining findings of existing studies that estimate the average serial interval and incubation period of COVID-19 significantly improves the quality of evidence. Hence, this study aimed to determine the overall average serial interval and incubation period of COVID-19. Methods We followed the PRISMA checklist to present this study. A comprehensive search strategy was carried out from international electronic databases (Google Scholar, PubMed, Science Direct, Web of Science, CINAHL, and Cochrane Library) by two experienced reviewers (MAA and DBK) authors between the 1st of June and the 31st of July 2020. All observational studies either reporting the serial interval or incubation period in persons diagnosed with COVID-19 were included in this study. Heterogeneity across studies was assessed using the I2 and Higgins test. The NOS adapted for cross-sectional studies was used to evaluate the quality of studies. A random effect Meta-analysis was employed to determine the pooled estimate with 95% (CI). Microsoft Excel was used for data extraction and R software was used for analysis. Results We combined a total of 23 studies to estimate the overall mean serial interval of COVID-19. The mean serial interval of COVID-19 ranged from 4. 2 to 7.5 days. Our meta-analysis showed that the weighted pooled mean serial interval of COVID-19 was 5.2 (95%CI: 4.9–5.5) days. Additionally, to pool the mean incubation period of COVID-19, we included 14 articles. The mean incubation period of COVID-19 also ranged from 4.8 to 9 days. Accordingly, the weighted pooled mean incubation period of COVID-19 was 6.5 (95%CI: 5.9–7.1) days. Conclusions This systematic review and meta-analysis showed that the weighted pooled mean serial interval and incubation period of COVID-19 were 5.2, and 6.5 days, respectively. In this study, the average serial interval of COVID-19 is shorter than the average incubation period, which suggests that substantial numbers of COVID-19 cases will be attributed to presymptomatic transmission.


Sign in / Sign up

Export Citation Format

Share Document