scholarly journals Post−surge geometry and thermal structure of Hørbyebreen, central Spitsbergen

2013 ◽  
Vol 34 (3) ◽  
pp. 305-321 ◽  
Author(s):  
Jakub Małecki ◽  
Samuel Faucherre ◽  
Mateusz C. Strzelecki

Abstract Hørbyebreen surged in the 19th or early 20th century, as suggested by geomorphological evidences and looped medial moraines. In this study, we investigate its wide−spread geometry changes and geodetic mass balance with 1960 contour lines, 1990 and 2009 digital elevation models, in order to define the present−day state of the glacier. We also study its thermal structure from ground−penetrating radar data. Little is known about the glacier behaviour in the first part of the 20th century, but from its surge maximum until 1960 it has been retreating and losing its area. In the period 1960-1990, fast frontal thinning (2-3ma−1) and a slow mass build−up in the higher zones (~0.15 m a−1) have been noted, resulting in generally negative mass balance (−0.40 ± 0.07 m w. eq. a−1). In the last studied period 1990-2009, the glacier showed an acceleration of mass loss (−0.64 m ± 0.07 w. eq. a−1) and no build−up was observed anymore. We conclude that Hørbyebreen system under present climate will not surge anymore and relate this behaviour to a considerable increase in summer temperature on Svalbard after 1990. Radar soundings indicate that the studied glacial system is polythermal, with temperate ice below 100-130 m depth. It has therefore not (or not yet) switched to cold−bedded, as has been suggested in previous works for some small Svalbard surge−type glaciers in a negative mass balance mode.

2011 ◽  
Vol 5 (1) ◽  
pp. 139-149 ◽  
Author(s):  
K. Bælum ◽  
D. I. Benn

Abstract. Proglacial icings accumulate in front of many High Arctic glaciers during the winter months, as water escapes from englacial or subglacial storage. Such icings have been interpreted as evidence for warm-based subglacial conditions, but several are now known to occur in front of cold-based glaciers. In this study, we investigate the drainage system of Tellbreen, a 3.5 km long glacier in central Spitsbergen, where a large proglacial icing develops each winter, to determine the location and geometry of storage elements. Digital elevation models (DEMs) of the glacier surface and bed were constructed using maps, differential GPS and ground penetrating radar (GPR). Rates of surface lowering indicate that the glacier has a long-term mass balance of −0.6 ± 0.2 m/year. Englacial and subglacial drainage channels were mapped using GPR, showing that Tellbreen has a diverse drainage system that is capable of storing, transporting and releasing water year round. In the upper part of the glacier, drainage is mainly via supraglacial channels. These transition downglacier into shallow englacial "cut and closure" channels, formed by the incision and roof closure of supraglacial channels. Below thin ice near the terminus, these channels reach the bed and contain stored water throughout the winter months. Even though no signs of temperate ice were detected and the bed is below pressure-melting point, Tellbreen has a surface-fed, channelized subglacial drainage system, which allows significant storage and delayed discharge.


1997 ◽  
Vol 24 ◽  
pp. 355-360 ◽  
Author(s):  
Jack Kohler ◽  
John Moore ◽  
Mike Kennett ◽  
Rune Engeset ◽  
Hallgeir Elvehøy

In traditional mass-balance measurements one estimates winter snow accumulation by identifying the depth to the previous summer’s snow or ice surface using a snow probe. This is labor-intensive and unreliable for inhomogeneous summer surfaces. Another method is to image internal reflection horizons using a ground-penetrating radar (GPR), which has advantages in speed and areal coverage over traditional probing. However, to obtain quantitative mass-balance measurements from GPR images one needs to convert the time scale to a depth scale, not a straightforward problem. We compare a GPR section with dielectric profiles and visual stratigraphy of three snow cores, manual probings, and previous mass-balance measurements. We relate changes in snow-core dielectric properties to changes in density and to the travel times of reflecting horizons in the GPR section, and correlate some of these reflecting horizons with previous summer surfaces. We conclude that GPR can be used as a complementary tool in mass-balance measurements, giving a wide areal survey of winter accumulation and net balance for preceding years. However, proper calibration is essential for identifying specific surfaces in the radar data.


1997 ◽  
Vol 24 ◽  
pp. 355-360 ◽  
Author(s):  
Jack Kohler ◽  
John Moore ◽  
Mike Kennett ◽  
Rune Engeset ◽  
Hallgeir Elvehøy

In traditional mass-balance measurements one estimates winter snow accumulation by identifying the depth to the previous summer’s snow or ice surface using a snow probe. This is labor-intensive and unreliable for inhomogeneous summer surfaces. Another method is to image internal reflection horizons using a ground-penetrating radar (GPR), which has advantages in speed and areal coverage over traditional probing. However, to obtain quantitative mass-balance measurements from GPR images one needs to convert the time scale to a depth scale, not a straightforward problem. We compare a GPR section with dielectric profiles and visual stratigraphy of three snow cores, manual probings, and previous mass-balance measurements. We relate changes in snow-core dielectric properties to changes in density and to the travel times of reflecting horizons in the GPR section, and correlate some of these reflecting horizons with previous summer surfaces. We conclude that GPR can be used as a complementary tool in mass-balance measurements, giving a wide areal survey of winter accumulation and net balance for preceding years. However, proper calibration is essential for identifying specific surfaces in the radar data.


2015 ◽  
Vol 9 (3) ◽  
pp. 1075-1087 ◽  
Author(s):  
L. Sold ◽  
M. Huss ◽  
A. Eichler ◽  
M. Schwikowski ◽  
M. Hoelzle

Abstract. The spatial representation of accumulation measurements is a major limitation for current glacier mass balance monitoring approaches. Here, we present a method for estimating annual accumulation rates on a temperate Alpine glacier based on the interpretation of internal reflection horizons (IRHs) in helicopter-borne ground-penetrating radar (GPR) data. For each individual GPR measurement, the signal travel time is combined with a simple model for firn densification and refreezing of meltwater. The model is calibrated at locations where GPR repeat measurements are available in two subsequent years and the densification can be tracked over time. Two 10.5 m long firn cores provide a reference for the density and chronology of firn layers. Thereby, IRHs correspond to density maxima, but not exclusively to former summer glacier surfaces. Along GPR profile sections from across the accumulation area we obtain the water equivalent (w.e.) of several annual firn layers. Because deeper IRHs could be tracked over shorter distances, the total length of analysed profile sections varies from 7.3 km for the uppermost accumulation layer (2011) to 0.1 km for the deepest (i.e. oldest) layer (2006). According to model results, refreezing accounts for 10% of the density increase over time and depth, and for 2% of the water equivalent. The strongest limitation to our method is the dependence on layer chronology assumptions. We show that GPR can be used not only to complement existing mass balance monitoring programmes on temperate glaciers but also to retrospectively extend newly initiated time series.


2018 ◽  
Vol 64 (4) ◽  
pp. 427-438
Author(s):  
L. V. Tsibizov ◽  
E. I. Esin ◽  
A. V. Grigorevskaya ◽  
K. A. Sosnovtsev

Paper is dedicated to geophysical mapping of polygonal wedge ice. Magnetometric and ground penetrating radar surveys were implemented on a small area of Yedoma ice complex on Kurungnakh island in Lena river delta. Such deposits are widely spread on a huge areas of Siberia and Alaska. The study was conducted near the thermoerosional gully, which propagates along the most thick ice wedges. Polygonal pattern is observable on high-resolution aerial imagery and digital elevation model - this data was used during the interpreting of obtained results. Study area (40×50 m) was covered with highresolution magnetic survey at the elevation of 2 m with 2×2 m step and with ground penetrating radar survey along profiles with 1 m distance between the profiles. Map of total magnetic field anomalies allow to determine the ice wedges of Yedoma ice complex distinctly. Difference between maximum positive (polygons centers) and negative (ice wedges) anomalies reaches 6 nT (error of the survey is 0,3 nT). Beyond that smaller ice wedges which penetrate the ice wedges of Yedoma complex are also observable in magnetic field. Basing on ground penetrating radar data an amplitude slice of at 3,5 m depth was built. Yedoma ice wedges are observable at depth of 3–4 m. Ground penetrating radar data is quite noisy due to surface inhomogeneity (puddles, knolls, etc.). Results of the surveys were compared in the light of practical application of the methods for above mentioned goal. Magnetometric method appears as more efficient than ground penetrating radar survey: it does not require a contact with the surface and more rapid, it is more sensitive as the case stands. Ground penetrating radar method may have advantages in the case of natural (magnetic storm, high-magnetized overlaying deposits) and anthropogenic (metal constructions — pipelines, ETL) noise.


PIERS Online ◽  
2006 ◽  
Vol 2 (6) ◽  
pp. 567-572
Author(s):  
Hui Zhou ◽  
Dongling Qiu ◽  
Takashi Takenaka

2021 ◽  
pp. 1-19
Author(s):  
Melchior Grab ◽  
Enrico Mattea ◽  
Andreas Bauder ◽  
Matthias Huss ◽  
Lasse Rabenstein ◽  
...  

Abstract Accurate knowledge of the ice thickness distribution and glacier bed topography is essential for predicting dynamic glacier changes and the future developments of downstream hydrology, which are impacting the energy sector, tourism industry and natural hazard management. Using AIR-ETH, a new helicopter-borne ground-penetrating radar (GPR) platform, we measured the ice thickness of all large and most medium-sized glaciers in the Swiss Alps during the years 2016–20. Most of these had either never or only partially been surveyed before. With this new dataset, 251 glaciers – making up 81% of the glacierized area – are now covered by GPR surveys. For obtaining a comprehensive estimate of the overall glacier ice volume, ice thickness distribution and glacier bed topography, we combined this large amount of data with two independent modeling algorithms. This resulted in new maps of the glacier bed topography with unprecedented accuracy. The total glacier volume in the Swiss Alps was determined to be 58.7 ± 2.5 km3 in the year 2016. By projecting these results based on mass-balance data, we estimated a total ice volume of 52.9 ± 2.7 km3 for the year 2020. Data and modeling results are accessible in the form of the SwissGlacierThickness-R2020 data package.


2020 ◽  
pp. 1-10
Author(s):  
Tate G. Meehan ◽  
H. P. Marshall ◽  
John H. Bradford ◽  
Robert L. Hawley ◽  
Thomas B. Overly ◽  
...  

Abstract We present continuous estimates of snow and firn density, layer depth and accumulation from a multi-channel, multi-offset, ground-penetrating radar traverse. Our method uses the electromagnetic velocity, estimated from waveform travel-times measured at common-midpoints between sources and receivers. Previously, common-midpoint radar experiments on ice sheets have been limited to point observations. We completed radar velocity analysis in the upper ~2 m to estimate the surface and average snow density of the Greenland Ice Sheet. We parameterized the Herron and Langway (1980) firn density and age model using the radar-derived snow density, radar-derived surface mass balance (2015–2017) and reanalysis-derived temperature data. We applied structure-oriented filtering to the radar image along constant age horizons and increased the depth at which horizons could be reliably interpreted. We reconstructed the historical instantaneous surface mass balance, which we averaged into annual and multidecadal products along a 78 km traverse for the period 1984–2017. We found good agreement between our physically constrained parameterization and a firn core collected from the dry snow accumulation zone, and gained insights into the spatial correlation of surface snow density.


Sign in / Sign up

Export Citation Format

Share Document