scholarly journals Characterization of Coconut Shell Ash and Eggshell Powder as Supplementary Cementitious Materials in Roller Compacted Concrete Industrial Access Pavements and Parking Facilities

2021 ◽  
Vol 10 (1) ◽  
pp. 67-87
Author(s):  
Alban Chidiebere Ogbonna

Abstract The cost of cement used in concrete works is on the increase and unaffordable, yet the need for hydraulic cement concrete and other cement concrete based infrastructures keeps growing with increasing population, thus the need to find alternative binding materials that can be used solely or in partial replacement of cement. The use of waste materials with pozzolanic properties in concrete production is a becoming a worldwide practice. The assessment of the pozzolanic activity of cement replacement materials is becoming increasingly important because of the need for more sustainable cementing products. In this study, a mixture of coconut shell ash and eggshell powder is used as partial replacement of hydraulic cement in ranges of 0%, 5%, 10%, 15%, and 20%. The concrete specimens were prepared at 1: 3: 2.5 mix ratio of cementitious material, fine aggregate and coarse aggregate. The mix ratio satisfied the minimum cement content of 148.32kg/m3 (250Ib/yd3) and the minimum cementitious material content of 267 kg/m3 (450Ib/yd3) for roller compacted concrete pavement. The compressive strength, splitting tensile strength and flexural strength tests were carried out to assess the strength characteristics of ternary concrete mixture containing coconut shell ash and eggshell powder and the feasibility of using coconut shell ash and eggshell powder as partial replacement of cement in industrial plant access concrete roads and parking lots. The results indicate that a mixture of coconut shell ash and eggshell powder can be used up to 20% by weight for replacement of cement in roller compacted industrial plant access concrete roads and parking lots.

Author(s):  
Aditi Lawande ◽  
Areeb Ahmed ◽  
Laukik Dessai ◽  
Rahul Naik ◽  
Tanvi Kavlekar ◽  
...  

2018 ◽  
Vol 15 (6) ◽  
pp. 206-211
Author(s):  
Ikeagwuani Chijioke Christopher ◽  
Obeta Ifeanyi Ndubuisi ◽  
Nwonu Donald Chimobi ◽  
Onyia Victor Arinze ◽  
Japhet Nnaemeka Ezema

Currently cement is the most important material in the construction sector. Ordinary Portland cement is one of the main ingredients used for the production of concrete. Unfortunately, production of cement involves emission of large amounts of carbon-dioxide gas into the atmosphere, a major contributor of greenhouse effect and consequent global warming. While, cement typically comprises only 12% of the concrete mass, it accounts for approximately 93% of the total embodied energy of concrete and 6% to 7% of the world wide Carbon dioxide (CO2 ) emissions. Hence, it is of utmost importance to either search for another cementitious material or partially replace it by some other material. Currently there is a trend of usage of waste products such as fly ash from coal industries, GGBS from iron smelting process, paper ash from paper industry etc as supplementary cementitious materials to enhance the properties of concrete while also effectively reducing the carbon foot print. Ground Granulated Blast Furnace Slag (GGBS) is a by-product from iron smelting process using the blast-furnace. The present paper is prepared to study the effect on compressive strength of concrete due to partial replacement of cement with GGBS as supplementary cementitious material while using master REHO build 823PQ.


2021 ◽  
Vol 27 (8) ◽  
pp. 80-98
Author(s):  
Mahmood Fawzi Ahmed

Portland cement concrete is the most commonly used construction material in the world for decades. However, the searches in concrete technology are remaining growing to meet particular properties related to its strength, durability, and sustainability issue. Thus, several types of concrete have been developed to enhance concrete performance. Most of the modern concrete types have to contain supplementary cementitious materials (SCMs) as a partial replacement of cement. These materials are either by-products of waste such as fly ash, slag, rice husk ash, and silica fume or from a geological resource like natural pozzolans and metakaolin (MK). Ideally, the utilization of SCMs will enhance the concrete performance, minimize environmental pollution and mitigate the drawbacks of cement production attributed to the highly CO2 emission. In general, MK's ultra-fineness and high pozzolanic activity are exhibited a remarkable performance of concrete in terms of strength and durability. However, the filler effect, acceleration of cement hydration, and the pozzolanic reaction with calcium hydroxide (CH) are the main factors influencing the performance of metakaolin as a cementitious material. Therefore, numerous researches have been undertaken on inclusion MK in concrete and mortar and production of (free-cement concrete) geopolymer concrete. This paper reviews some of previous native researches on effect of using Iraqi metakaolin as a pozzolanic material in different types of concrete. The standpoint of this review will guide the researchers on the importance of utilization of local MK and highlight the missing researches toward completing a comprehensive understanding of incorporation Iraqi-metakaolin in concrete technology.


2019 ◽  
Vol 1 (6) ◽  
Author(s):  
Sunday U. Azunna ◽  
Farah N. A. A. Aziz ◽  
Pang M. Cun ◽  
Mohamed M. O. Elhibir

2007 ◽  
Vol 34 (7) ◽  
pp. 793-802 ◽  
Author(s):  
Said Laldji ◽  
Arezki Tagnit-Hamou

With today's requirements for high-performance concrete, mix proportions containing cementitious materials as partial replacement of, or in addition to, Portland cement, are being used more frequently. The most commonly used cementitious materials nowadays are fly ash, silica fume, and ground, granulated blast-furnace slag. However, alternative supplementary cementitious materials can successfully be used as long as they meet the acceptance criteria stated in various specifications. This paper provides data on properties of structural concrete containing glass frit. The performance of this type of concrete is highlighted by its rheological and mechanical behaviour, as well as its durability. Later-age compressive, splitting tensile, and flexural strengths are well above estimated values, and in many cases, are higher than those obtained with the control concrete. Durability aspects and characteristics expressed by drying shrinkage, surface scaling, and chloride-ion permeability have shown that concrete incorporating glass frit has a very good potential for long-term resistance.Key words: glass frit, cementitious material, workability, mechanical properties, durability.


2012 ◽  
Vol 2 (11) ◽  
pp. 189-191 ◽  
Author(s):  
Yogendra O Patil ◽  
◽  
P.N.Patil P.N.Patil ◽  
Dr. Arun Kumar Dwivedi

Sign in / Sign up

Export Citation Format

Share Document