scholarly journals Implementing User Behaviour on Dynamic Building Simulations for Energy Consumption

2019 ◽  
Vol 23 (3) ◽  
pp. 308-318
Author(s):  
Carlos Jimenez-Bescos ◽  
Xabat Oregi

Abstract User behaviour influences the energy consumption of domestic properties with different range of variations and this has an effect on the results of building simulations based on default or general values, as opposed to implementing user behaviour. The aim of this paper is to evaluate and quantify the effect of implementing user behaviour in building dynamic simulation to calculate heating and domestic how water energy consumption to reduce the performance gap. The results for space heating and domestic hot water from dynamic building simulations will be compare to actual energy bills for a general building simulation technique and a calibrated building simulation, incorporating user behaviour details. By using user behaviour details to create calibrated building simulations, a correlation to actual energy bills of over 90 % can be achieved for a dataset of 22 properties. This study has shown that by incorporating user behaviour into building simulations, a more accurate estimation of energy consumption can be achieved. More importantly, the methodology approach allows the user behaviour parameters to be collected by means of a questionnaire, providing an easy and low budget approach to incorporate user behaviour into dynamic building simulations to reduce the performance.

2019 ◽  
Vol 111 ◽  
pp. 04013
Author(s):  
Hye-Sun Jin ◽  
Han-Young Lim ◽  
You-Jeong Kim ◽  
Soo-Jin Lee ◽  
Sung-Im Kim ◽  
...  

To achieve the goal of reducing greenhouses gases, many countries have recognized the importance of energy conservation in the building sector, and such countries are considerably strengthening their building energy conservation policies by reinforcing design standards, encouraging remodeling, and requiring zero-energy construction. In order to effectively strengthen these policies, it is necessary to provide information concerning energy consumption in the building sector to ensure the technical and economic feasibility of policies in the marketplace, and to allow building users and policy makers to easily access and understand energy consumption characteristics. It is important to provide information that allows people to effectively understand the state of energy consumption by end-use (space heating, space cooling, domestic hot water, etc.) as part of the creation of a concrete plan for energy reduction that incorporates various service systems and is familiar to people. This is because providing such information plays an important role in establishing concrete policies and encouraging voluntary energy performance improvements by building occupants. South Korea operates the Korea Energy Statistics Information System (KESIS) and the information provided by this type of information system consists mainly of energy consumption by energy source (electricity, gas, etc.), and such systems remain inadequate for providing effective information on energy consumption and energy use intensity (EUI) by end-use (space heating, space cooling, domestic hot water, etc.) as part of the creation of a concrete plan for energy conservation. In order to accurately provide energy consumption information by end-use rather than limit the information to mainly consumption corresponding to energy sources, in this study, measurement systems were installed in 2014 ~ 2016 based on the overall sampling designs of previous studies for apartment units, classifications, measurement and data gathering methods for energy consumption by end-use. The annual statistical values for EUI by end-use were collected from the measurement data for 71 sample apartment units from May 2017 to April 2018. This data was calculated and analyzed using stratification variable levels for completion year, supplied area, and the heat source type.


Author(s):  
Hamid Aghaie

Austrian district heating (DH) has experienced a fast increasing trend for the last 30 years (with the exception of the period 2010-2014), resulting in a triplication of delivered heat; in the year 2018, with about 2400 networks and 20 TWh supply, DH covered 6.4% of the final energy consumption (1122.5 PJ). Worth to underline is also that this growth of Austrian district heating has been about twice faster than the one of the energy demand in the same period. Currently, district heating provides about 26% of the Austrian households with the energy requested for space heating and domestic hot water preparation.


2019 ◽  
Vol 116 ◽  
pp. 00088
Author(s):  
Małgorzata Szulgowska-Zgrzywa ◽  
Magdalena Baborska-Narożny ◽  
Krzysztof Piechurski ◽  
Ewelina Stefanowicz ◽  
Agnieszka Chmielewska ◽  
...  

The energy consumption for space heating and domestic hot water preparation are significant burdens of a polish household budget, especially in old tenement houses. Simultaneously, lowering the emission of pollutants is under the great importance and one of main goals to achieve in big cities. This policy results in the need of elimination of systems based on solid fuels. The article analyses the environmental and social consequences of the exchange of heat sources in such buildings in one of the quarters in Wroclaw. It presents how this change will affect the levels of low emission and costs of energy supply to tenement buildings.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 476
Author(s):  
Vincenza Brancato ◽  
Larisa G. Gordeeva ◽  
Angela Caprì ◽  
Alexandra D. Grekova ◽  
Andrea Frazzica

In this study, the development and comparative characterization of different composite sorbents for thermal energy storage applications is reported. Two different applications were targeted, namely, low-temperature space heating (SH) and domestic hot water (DHW) provision. From a literature analysis, the most promising hygroscopic salts were selected for these conditions, being LiCl for SH and LiBr for DHW. Furthermore, two mesoporous silica gel matrixes and a macroporous vermiculite were acquired to prepare the composites. A complete characterization was performed by investigating the porous structure of the composites before and after impregnation, through N2 physisorption, as well as checking the phase composition of the composites at different temperatures through X-ray powder diffraction (XRD) analysis. Furthermore, sorption equilibrium curves were measured in water vapor atmosphere to evaluate the adsorption capacity of the samples and a detailed calorimetric analysis was carried out to evaluate the reaction evolution under real operating conditions as well as the sorption heat of each sample. The results demonstrated a slower reaction kinetic in the vermiculite-based composites, due to the larger size of salt grains embedded in the pores, while promising volumetric storage densities of 0.7 GJ/m3 and 0.4 GJ/m3 in silica gel-based composites were achieved for SH and DHW applications, respectively.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3350
Author(s):  
Theofanis Benakopoulos ◽  
William Vergo ◽  
Michele Tunzi ◽  
Robbe Salenbien ◽  
Svend Svendsen

The operation of typical domestic hot water (DHW) systems with a storage tank and circulation loop, according to the regulations for hygiene and comfort, results in a significant heat demand at high operating temperatures that leads to high return temperatures to the district heating system. This article presents the potential for the low-temperature operation of new DHW solutions based on energy balance calculations and some tests in real buildings. The main results are three recommended solutions depending on combinations of the following three criteria: district heating supply temperature, relative circulation heat loss due to the use of hot water, and the existence of a low-temperature space heating system. The first solution, based on a heating power limitation in DHW tanks, with a safety functionality, may secure the required DHW temperature at all times, resulting in the limited heating power of the tank, extended reheating periods, and a DH return temperature of below 30 °C. The second solution, based on the redirection of the return flow from the DHW system to the low-temperature space heating system, can cool the return temperature to the level of the space heating system return temperature below 35 °C. The third solution, based on the use of a micro-booster heat pump system, can deliver circulation heat loss and result in a low return temperature below 35 °C. These solutions can help in the transition to low-temperature district heating.


2016 ◽  
Vol 124 ◽  
pp. 120-128 ◽  
Author(s):  
David Fischer ◽  
Tobias Wolf ◽  
Johannes Scherer ◽  
Bernhard Wille-Haussmann

2021 ◽  
Author(s):  
Amir Fereidouni Kondri

This report presents the methodology for determining least cost energy efficient upgrade solutions in new residential housing using brute force sequential search (BFSS) method for integration into the reference house to reduce energy consumption while minimizing the net present value (NPV) of life cycle costs. The results showed that, based on the life cycle cost analysis of 30 years, the optimal upgrades resulted in the average of 19.25% (case 1), 31% (case 2a), and 21% (case 2b) reduction in annual energy consumption. Economic conditions affect the sequencing of the upgrades. In this respect the preferred upgrades to be performed in order are; domestic hot water heating, above grade wall insulation, cooling systems, ceiling insulation, floor insulation, heat recovery ventilator, basement slab insulation and below grade wall insulation. When the gas commodity pricing becomes high, the more energy efficient upgrades for domestic hot water (DHW) get selected at a cost premium.


Sign in / Sign up

Export Citation Format

Share Document