scholarly journals Analysis of Annual Energy Use Intensities (EUIs) by End-Use in Apartment Units According to Stratification Variables (2017 – 2018)

2019 ◽  
Vol 111 ◽  
pp. 04013
Author(s):  
Hye-Sun Jin ◽  
Han-Young Lim ◽  
You-Jeong Kim ◽  
Soo-Jin Lee ◽  
Sung-Im Kim ◽  
...  

To achieve the goal of reducing greenhouses gases, many countries have recognized the importance of energy conservation in the building sector, and such countries are considerably strengthening their building energy conservation policies by reinforcing design standards, encouraging remodeling, and requiring zero-energy construction. In order to effectively strengthen these policies, it is necessary to provide information concerning energy consumption in the building sector to ensure the technical and economic feasibility of policies in the marketplace, and to allow building users and policy makers to easily access and understand energy consumption characteristics. It is important to provide information that allows people to effectively understand the state of energy consumption by end-use (space heating, space cooling, domestic hot water, etc.) as part of the creation of a concrete plan for energy reduction that incorporates various service systems and is familiar to people. This is because providing such information plays an important role in establishing concrete policies and encouraging voluntary energy performance improvements by building occupants. South Korea operates the Korea Energy Statistics Information System (KESIS) and the information provided by this type of information system consists mainly of energy consumption by energy source (electricity, gas, etc.), and such systems remain inadequate for providing effective information on energy consumption and energy use intensity (EUI) by end-use (space heating, space cooling, domestic hot water, etc.) as part of the creation of a concrete plan for energy conservation. In order to accurately provide energy consumption information by end-use rather than limit the information to mainly consumption corresponding to energy sources, in this study, measurement systems were installed in 2014 ~ 2016 based on the overall sampling designs of previous studies for apartment units, classifications, measurement and data gathering methods for energy consumption by end-use. The annual statistical values for EUI by end-use were collected from the measurement data for 71 sample apartment units from May 2017 to April 2018. This data was calculated and analyzed using stratification variable levels for completion year, supplied area, and the heat source type.

Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3050
Author(s):  
Seung-Yeong Song ◽  
Hye-Sun Jin ◽  
Soo-Yeon Ha ◽  
Sung-Im Kim ◽  
You-Jeong Kim ◽  
...  

Energy consumption in the building sector has been continuously increasing, and energy conservation in this sector has become critical for achieving the national goal of reducing greenhouse gas emissions. In South Korea, information on energy sources (electricity, gas, district heating, etc.) is provided, but detailed energy use information, such as space heating, space cooling, domestic hot water (DHW) and lighting, is insufficient to establish a specific action plan for energy savings. Energy use information by end-use can be acquired through actual measurements in close proximity to actual energy use. This information reflects the effects of complex elements such as building operations and residential characteristics, but it is also insufficient. This study presents statistical data on energy use intensities (EUIs) and greenhouse-gas-emission intensities by end-use, derived by measured data collected from 48 sample office buildings in representative city from May 2017 to April 2018, and compares those with the U.S. commercial building energy consumption survey (CBECS) 2012 report. The average site EUIs by end-use were in the following order: space heating > electric appliances (typical floors) > space cooling > lighting > air movement > DHW > vertical transportation > city water supply. With regard to the average primary EUIs by end-use, the magnitude relationship between electric appliances (typical floors) and space heating was opposite that of the average site EUIs. Vertical transportation and DHW exhibited almost the same average greenhouse-gas-emission intensities as those of the average annual primary EUIs. The average site EUIs in the CBECS 2012 data were slightly different from those in this study: electric appliances, etc. > space heating > air movement > lighting > space cooling > DHW. The number of office buildings monitored in this study increased until 2019 (the number of total samples: 85), and the intensity data by end-use will be brought up to date through continuous measurement.


2012 ◽  
Vol 433-440 ◽  
pp. 1219-1225
Author(s):  
Jing Hong Ning ◽  
Sheng Chun Liu

This paper reports a combined space cooling, space heating, water heating and food refrigeration system (named CO2 combined system) in supermarket. This system using CO2 as the working fluid consists of a two-stage CO2 transcritical cycle used for food refrigeration, a single-stage CO2 transcritical cycle for space cooling in summer and space heating in winter. The waste heat emitted from the CO2 gas cooling in food refrigeration cycle and space cooling and space heating cycles is recovered by heat recover exchanger and is used to provide hot water for space heating and for general usage, such as the catering, the washing and the toilet facilities in the supermarket. So this CO2 combined system improves the coefficient of performance, decreases the energy consumption as well as reduces the heat pollution. Moreover, this CO2 combined system is compared with typical conventional supermarket technology, the results show that the energy consumption of CO2 combined system is reduced largely and energy efficiency is increased obviously. It can be concluded that the CO2 combined system has a good future for protecting environment and saving energy.


Author(s):  
Swapan Saha ◽  
Dharma Hagare ◽  
Jiaqi Zhou ◽  
Md Kamrul Hassan

Space cooling and heating in residential sector is significant contributor to energy consumption in Australia. Therefore, it is important to reduce the cooling and heating requirements. The selection of a good walling system helps to save energy by homes. This research compared the thermal efficiency of a modern house (constructed using brick veneer walls with concrete floor slab) with an old house (constructed using fibro cement walls raised timber floor) using the AccuRate simulation tool. A standard house with two living rooms, one kitchen, one laundry and four bedrooms are simulated in a Sydney Suburb in Australia. It was found that modern house showed lower inside temperature variation than the old house all year around. The results also showed that the modern house has a lower energy consumption for space heating and cooling than the old house. The annual energy use for space heating and cooling in both the modern house and old house were 5197 kWh and 15,712 kWh respectively. Moreover, the annual energy costs were found to be $1,403 and $4,242 respectively for modern and old houses. The modern brick veneer house saved about 33 % of energy compared to old old house. When the net present value of the energy cost for f both houses over 50 years is computed, the energy cost of modern house was found to be $25,629 while it of old house is was $77,488 for the old house.


2019 ◽  
Vol 23 (3) ◽  
pp. 308-318
Author(s):  
Carlos Jimenez-Bescos ◽  
Xabat Oregi

Abstract User behaviour influences the energy consumption of domestic properties with different range of variations and this has an effect on the results of building simulations based on default or general values, as opposed to implementing user behaviour. The aim of this paper is to evaluate and quantify the effect of implementing user behaviour in building dynamic simulation to calculate heating and domestic how water energy consumption to reduce the performance gap. The results for space heating and domestic hot water from dynamic building simulations will be compare to actual energy bills for a general building simulation technique and a calibrated building simulation, incorporating user behaviour details. By using user behaviour details to create calibrated building simulations, a correlation to actual energy bills of over 90 % can be achieved for a dataset of 22 properties. This study has shown that by incorporating user behaviour into building simulations, a more accurate estimation of energy consumption can be achieved. More importantly, the methodology approach allows the user behaviour parameters to be collected by means of a questionnaire, providing an easy and low budget approach to incorporate user behaviour into dynamic building simulations to reduce the performance.


Author(s):  
Hamid Aghaie

Austrian district heating (DH) has experienced a fast increasing trend for the last 30 years (with the exception of the period 2010-2014), resulting in a triplication of delivered heat; in the year 2018, with about 2400 networks and 20 TWh supply, DH covered 6.4% of the final energy consumption (1122.5 PJ). Worth to underline is also that this growth of Austrian district heating has been about twice faster than the one of the energy demand in the same period. Currently, district heating provides about 26% of the Austrian households with the energy requested for space heating and domestic hot water preparation.


2019 ◽  
Vol 116 ◽  
pp. 00088
Author(s):  
Małgorzata Szulgowska-Zgrzywa ◽  
Magdalena Baborska-Narożny ◽  
Krzysztof Piechurski ◽  
Ewelina Stefanowicz ◽  
Agnieszka Chmielewska ◽  
...  

The energy consumption for space heating and domestic hot water preparation are significant burdens of a polish household budget, especially in old tenement houses. Simultaneously, lowering the emission of pollutants is under the great importance and one of main goals to achieve in big cities. This policy results in the need of elimination of systems based on solid fuels. The article analyses the environmental and social consequences of the exchange of heat sources in such buildings in one of the quarters in Wroclaw. It presents how this change will affect the levels of low emission and costs of energy supply to tenement buildings.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3876
Author(s):  
Sameh Monna ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
Aiman Albatayneh ◽  
Patrick Dutournie ◽  
...  

Since buildings are one of the major contributors to global warming, efforts should be intensified to make them more energy-efficient, particularly existing buildings. This research intends to analyze the energy savings from a suggested retrofitting program using energy simulation for typical existing residential buildings. For the assessment of the energy retrofitting program using computer simulation, the most commonly utilized residential building types were selected. The energy consumption of those selected residential buildings was assessed, and a baseline for evaluating energy retrofitting was established. Three levels of retrofitting programs were implemented. These levels were ordered by cost, with the first level being the least costly and the third level is the most expensive. The simulation models were created for two different types of buildings in three different climatic zones in Palestine. The findings suggest that water heating, space heating, space cooling, and electric lighting are the highest energy consumers in ordinary houses. Level one measures resulted in a 19–24 percent decrease in energy consumption due to reduced heating and cooling loads. The use of a combination of levels one and two resulted in a decrease of energy consumption for heating, cooling, and lighting by 50–57%. The use of the three levels resulted in a decrease of 71–80% in total energy usage for heating, cooling, lighting, water heating, and air conditioning.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 476
Author(s):  
Vincenza Brancato ◽  
Larisa G. Gordeeva ◽  
Angela Caprì ◽  
Alexandra D. Grekova ◽  
Andrea Frazzica

In this study, the development and comparative characterization of different composite sorbents for thermal energy storage applications is reported. Two different applications were targeted, namely, low-temperature space heating (SH) and domestic hot water (DHW) provision. From a literature analysis, the most promising hygroscopic salts were selected for these conditions, being LiCl for SH and LiBr for DHW. Furthermore, two mesoporous silica gel matrixes and a macroporous vermiculite were acquired to prepare the composites. A complete characterization was performed by investigating the porous structure of the composites before and after impregnation, through N2 physisorption, as well as checking the phase composition of the composites at different temperatures through X-ray powder diffraction (XRD) analysis. Furthermore, sorption equilibrium curves were measured in water vapor atmosphere to evaluate the adsorption capacity of the samples and a detailed calorimetric analysis was carried out to evaluate the reaction evolution under real operating conditions as well as the sorption heat of each sample. The results demonstrated a slower reaction kinetic in the vermiculite-based composites, due to the larger size of salt grains embedded in the pores, while promising volumetric storage densities of 0.7 GJ/m3 and 0.4 GJ/m3 in silica gel-based composites were achieved for SH and DHW applications, respectively.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3350
Author(s):  
Theofanis Benakopoulos ◽  
William Vergo ◽  
Michele Tunzi ◽  
Robbe Salenbien ◽  
Svend Svendsen

The operation of typical domestic hot water (DHW) systems with a storage tank and circulation loop, according to the regulations for hygiene and comfort, results in a significant heat demand at high operating temperatures that leads to high return temperatures to the district heating system. This article presents the potential for the low-temperature operation of new DHW solutions based on energy balance calculations and some tests in real buildings. The main results are three recommended solutions depending on combinations of the following three criteria: district heating supply temperature, relative circulation heat loss due to the use of hot water, and the existence of a low-temperature space heating system. The first solution, based on a heating power limitation in DHW tanks, with a safety functionality, may secure the required DHW temperature at all times, resulting in the limited heating power of the tank, extended reheating periods, and a DH return temperature of below 30 °C. The second solution, based on the redirection of the return flow from the DHW system to the low-temperature space heating system, can cool the return temperature to the level of the space heating system return temperature below 35 °C. The third solution, based on the use of a micro-booster heat pump system, can deliver circulation heat loss and result in a low return temperature below 35 °C. These solutions can help in the transition to low-temperature district heating.


Sign in / Sign up

Export Citation Format

Share Document