Cryopreservation of grapevine (Vitis vinifera L.) in vitro shoot tips

2013 ◽  
Vol 8 (10) ◽  
pp. 993-1000 ◽  
Author(s):  
Zvjezdana Marković ◽  
Philippe Chatelet ◽  
Isabelle Sylvestre ◽  
Jasminka Kontić ◽  
Florent Engelmann

AbstractIn this work, we compared the efficiency of encapsulation-dehydration and droplet-vitrification techniques for cryopreserving grapevine (Vitis vinifera L.) cv. Portan shoot tips. Recovery of cryopreserved samples was achieved with both techniques; however, droplet-vitrification, which was used for the first time with grapevine shoot tips, produced higher regrowth. With encapsulationdehydration, encapsulated shoot tips were precultured in liquid medium with progressively increasing sucrose concentrations over a 2-day period (12 h in medium with 0.25, 0.5, 0.75 and 1.0 M sucrose), then dehydrated to 22.28% moisture content (fresh weight). After liquid nitrogen exposure 37.1% regrowth was achieved using 1 mm-long shoot tips and only 16.0% with 2 mm-long shoot tips. With droplet-vitrification, 50% regrowth was obtained following treatment of shoot tips with a loading solution containing 2 M glycerol + 0.4 M sucrose for 20 min, dehydration with half-strength PVS2 vitrification solution (30% (w/v) glycerol, 15% (w/v) ethylene glycol, 15% dimethylsulfoxide and 0.4 M sucrose in basal medium) at room temperature, then with full strength PVS2 solution at 0°C for 50 min before direct immersion in liquid nitrogen. No regrowth was achieved after cryopreservation when shoot tips were dehydrated with PVS3 vitrification solution (50% (w/v) glycerol and 50% (w/v) sucrose in basal medium).

2017 ◽  
Vol 66 (1-2) ◽  
pp. 44-50
Author(s):  
Tatjana Vujović ◽  
Đurđina Ružić ◽  
Radosav Cerović

SummaryIn vitro shoot tips of the blackberry cultivar ‘Čačanska Bestrna’ were cryopreserved using the droplet vitrification technique. Upon loading (30 min) in a solution of 1.9 M glycerol and 0.5 M sucrose, the explants were dehydrated for 40 min on ice with the PVS A3 vitrification solution (glycerol 37.5%, dimethyl sulfoxide 15%, ethylene glycol 15% and sucrose 22.5%) and for 40 min at room temperature with the PVS3 solution (glycerol 50% and sucrose 50%). They were subsequently frozen in individual microdroplets of vitrification solution, by direct immersion in liquid nitrogen (LN), and kept therein for 2, 4, 8 and 24 h. The explant rewarming was performed in an unloading solution (0.8 M sucrose) for 30 min at room temperature. The duration of LN exposure did not exert significant effects on the survival and regrowth of explants in both types of vitrification solutions. The survival and regrowth of cryopreserved shoot tips dehydrated with PVS3 solution ranged between 90–95% and 80–90%, respectively. However, dehydration with PVS A3 resulted in a lower survival rate (80–90%) and a considerably lower regrowth rate (55–65%) of explants. Monitoring the shoots regenerated in the in vitro culture revealed their normal capacity for multiplication and rooting in comparison with the controls, which fully confirms the purpose of cryopreservation in the long-term preservation of plant material.


2013 ◽  
Vol 41 (2) ◽  
pp. 638 ◽  
Author(s):  
Aylin OZUDOGRU ◽  
Diogo Pedrosa Corrêa Da SILVA ◽  
Ergun KAYA ◽  
Giuliano DRADI ◽  
Renato PAIVA ◽  
...  

The study focused on an economically-important ornamental outdoor shrub, Nandina domestica, with the aims to (i) optimize an effective in vitro conservation method, and (ii) develop a cryopreservation protocol for shoot tips by the PVS2 vitrification and droplet-vitrification techniques. For in vitro conservation of shoot cultures, the tested parameters were sucrose content in the storage medium (30, 45, 60 g/L) and storage temperature (4 °C or 8 °C). Cryopreservation was performed by applying the PVS2 vitrification solution, in 2-ml cryovials or in drops over aluminum foil strips, for 15, 30, 60 or 90 min at 0 °C, followed by the direct immersion in liquid nitrogen of shoot tips. Results show that N. domestica shoots can be conserved successfully for 6 months at both the temperatures tested, especially when 60 g/L sucrose is used in the storage medium. However, conservation at 4 °C showed to be more appropriate, as hyperhydricity was observed in post-conservation of shoots coming from storage at 8 °C. As for cryopreservation, a daily gradual increase of sucrose concentration (from 0.25 to 1.0 M) produced better protection to the samples that were stored in liquid nitrogen. Indeed, with this sucrose treatment method, a 30-min PVS2 incubation time was enough to produce, 60 days after thawing, the best recovery (47% and 50%) of shoot tips, cryopreserved with PVS2 vitrification and droplet-vitrification, respectively.


2013 ◽  
Vol 21 (2) ◽  
pp. 79-85 ◽  
Author(s):  
Djurdjina Ružić ◽  
Tatjana Vujović ◽  
Radosav Cerović

ABSTRACT The droplet-vitrification technique was applied to in vitro shoot tips of cherry rootstock Gisela 5 (Prunus cerasus × Prunus canescens). Explants were precultured in the dark at 23 °C, in liquid MS medium with a progressively increasing sucrose concentration (0.3 M for 15 h, then 0.7 M for 5 h). Loading involved a 30 min incubation of explants in a solution comprising 1.9 M glycerol and 0.5 M sucrose. Explants were dehydrated at room temperature using a solution PVS A3 [Murashige and Skoog (MS) liquid medium, 22.5% (w/v) sucrose, 37.5% (w/v) glycerol, 15% (w/v) ethylene glycol and 15% (w/v) dimethylsulfoxide] for 30, 40 and 50 min and the PVS3 solution [MS liquid medium, 50% (w/v) sucrose, 50% (w/v) glycerol] for 60, 90 and 120 min. Explants were cooled by direct immersion in liquid nitrogen (LN) in 10 μl droplets of vitrification solution placed on aluminum foil strips. The foil strips were retrieved from LN and immersed in preheated (37 °C) unloading solution (0.8 M sucrose) for 30 s, and an equal volume of unloading solution at room temperature was added for further incubation for 30 min. Shoot tips were transferred onto the regrowth medium, cultivated in the dark for 7 days before being incubated under standard conditions. Three weeks after transferring the shoot tips onto the regrowth medium, the survival rate of control and cryopreserved explants of Gisela 5 dehydrated with PVS A3 was 100%, regardless of the treatment duration. After dehydration with solution PVS3, the survival varied between 70 and 100% for control explants and 78 and 95% for cryopreserved shoot tips. Gisela 5 shoot tips dehydrated for 40 min with PVS A3 vitrification solution demonstrated the best regrowth (38%). When using the PVS3 solution, survival of cryopreserved shoot tips was the highest (95%) after 60 min treatment followed by 40% regrowth. After three successive subcultures on shoot multiplication, medium shoots recovered viability, multiplication ability and morphology equal of that prior to cryopreservation.


Plant Science ◽  
2003 ◽  
Vol 165 (2) ◽  
pp. 321-327 ◽  
Author(s):  
Qiaochun Wang ◽  
Munir Mawassi ◽  
Ping Li ◽  
Ron Gafny ◽  
Ilan Sela ◽  
...  

2013 ◽  
Vol 48 (11) ◽  
pp. 1524-1527 ◽  
Author(s):  
Gabriela Ferreira Nogueira ◽  
Moacir Pasqual ◽  
Jonny Everson Scherwinski-Pereira

The objective of this work was to evaluate the phytotoxicity of a plant vitrification solution (PVS2), and the survival of shoot tips of the sugarcane variety SP716949, after cryopreservation by droplet-vitrification. Shoot tips were precultured for 24 hours in MS medium containing 0.3 mol L-1 sucrose, and exposed to PVS2 for 0, 20 or 30 min. Shoot tips were then immersed in liquid nitrogen. Thawing was fast in concentrated sucrose solution (1.2 mol L-1). PVS2 is a nontoxic to shoot tips, which in turn are sensitive to liquid nitrogen. The best results occurred when shoot tips were maintained for up to 20 min in PVS2 solution, before freezing, with 20% survival.


2018 ◽  
Vol 66 (3) ◽  
pp. 1314
Author(s):  
Norafarain Sulong ◽  
Nurul Farhana Shahabudin ◽  
Normah Mohd Noor

A cryopreservation protocol was developed for in vitro shoot tips of Garcinia hombroniana using the vitrification technique. Four critical steps in the technique were investigated, namely preculture, loading, dehydration with Plant Vitrification Solution 2 (PVS2), and unloading. Shoot tips precultured for 48 hr gave significantly higher survival (75 %) compared to 24 hr preculture (50 %) after cryopreservation. Treatment with 1 M glycerol plus 0.4 M sucrose as a loading solution gave higher survival (45.83 %) compared to the other treatments (0.4 M sucrose + 2 M glycerol; 0.4 M sucrose). Shoot tips dehydrated with PVS2 for 25 min gave the highest survival after immersion in liquid nitrogen. Stepwise PVS2 treatment for 15 min with 50 % PVS2 followed by 10 min with 100 % PVS2 solution improved survival of the shoot tips after cryopreservation (41.67 %). Murashige and Skoog medium with 0.4 M sucrose gave significantly higher survival (66.67 %) than MS with 1.2 M sucrose (25 %) as an unloading solution. Water content was shown to decrease throughout the whole vitrification steps from 6.83 ± 1.66 g g-1 dw for fresh shoot tips down to 2.93 ± 0.28 g g-1 dw after PVS2 treatment. Further study on each step including recovery medium is required to improve the survival. Nevertheless, the present study showed the potential of using the vitrification technique for cryopreservation of G. hombroniana.


1970 ◽  
Vol 19 (1) ◽  
pp. 89-99
Author(s):  
K. Choudhary ◽  
M. Singh ◽  
M. S. Rathore ◽  
N. S. Shekhawat

This long term study demonstrates for the first time that it is possible to propagate embryogenic Vigna trilobata and to subsequently initiate the differentiation of embryos into complete plantlets. Initiation of callus was possible on 2,4-D. Somatic embryos differentiated on modified MS basal nutrient medium with 1.0 mg/l  of 2,4-D and 0.5 mg/l  of Kn. Sustained cell division resulted in globular and heart shape stages of somatic embryos. Transfer of embryos on to a fresh modified MS basal medium with 0.5 mg/l of Kn and 0.5 mg/l of GA3 helped them to attain maturation and germination. However, the propagation of cells, as well as the differentiation of embryos, were inhibited by a continuous application of these growth regulators. For this reason, a long period on medium lacking these growth regulators was necessary before the differentiation of embryos occurred again. The consequences for improving the propagation of embryogenic cultures in Vigna species are discussed. Key words: Pasture  legume, Vigna trilobata, Globular, Heart shape, somatic embryogenesis D.O.I. 10.3329/ptcb.v19i1.4990 Plant Tissue Cult. & Biotech. 19(1): 89-99, 2009 (June)


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 490
Author(s):  
Martin Sák ◽  
Ivana Dokupilová ◽  
Šarlota Kaňuková ◽  
Michaela Mrkvová ◽  
Daniel Mihálik ◽  
...  

The in vitro cell cultures derived from the grapevine (Vitis vinifera L.) have been used for the production of stilbenes treated with different biotic and abiotic elicitors. The red-grape cultivar Váh has been elicited by natural cellulose from Trichoderma viride, the cell wall homogenate from Fusarium oxysporum and synthetic jasmonates. The sodium-orthovanadate, known as an inhibitor of hypersensitive necrotic response in treated plant cells able to enhance production and release of secondary metabolite into the cultivation medium, was used as an abiotic elicitor. Growth of cells and the content of phenolic compounds trans-resveratrol, trans-piceid, δ-viniferin, and ɛ-viniferin, were analyzed in grapevine cells treated by individual elicitors. The highest accumulation of analyzed individual stilbenes, except of trans-piceid has been observed after treatment with the cell wall homogenate from F. oxysporum. Maximum production of trans-resveratrol, δ- and ɛ-viniferins was triggered by treatment with cellulase from T. viride. The accumulation of trans-piceid in cell cultures elicited by this cellulase revealed exactly the opposite effect, with almost three times higher production of trans-resveratrol than that of trans-piceid. This study suggested that both used fungal elicitors can enhance production more effectively than commonly used jasmonates.


2019 ◽  
Vol 10 (4) ◽  
pp. 1856-1869 ◽  
Author(s):  
Joana R. Costa ◽  
Manuela Amorim ◽  
Ana Vilas-Boas ◽  
Renata V. Tonon ◽  
Lourdes M. C. Cabral ◽  
...  

Grape pomace (GP) is a major byproduct worldwide, and it is well known for its bioactive compounds, such as fibers and phenolic compounds, that are popular for their impact upon human health, including in gastrointestinal health.


Sign in / Sign up

Export Citation Format

Share Document