scholarly journals Efficiency of different PCR-based marker systems for assessment of Iris pumila genetic diversity

Biologia ◽  
2013 ◽  
Vol 68 (4) ◽  
Author(s):  
Olena Bublyk ◽  
Igor Andreev ◽  
Ruslan Kalendar ◽  
Kateryna Spiridonova ◽  
Viktor Kunakh

AbstractWe investigated informativeness and effectiveness of different marker types (ISSR, IRAP, REMAP, RGAP and LP-PCR that employ primers based on the conservative sequences of abiotic stress response genes) to study genetic diversity of Iris pumila L. By the number of amplicons per primer, number of polymorphic amplicons per primer and resolving power index (Rp), ISSR-markers were the most efficient followed by LP-PCR-markers. In order of decreasing value of indicators of genetic diversity “the percentage of polymorphic bands”, and “the average Jaccardś genetic distance between plants”, marker systems may be arranged as follows: ISSR > RAPD > LP-PC > RGAP ≈ IRAP. For ISSR-markers, the percentage of polymorphic bands was 1.3–1.7 times higher than for the others, and the average genetic distance was 1.2–1.3 times higher. Different marker systems were ranked by the value of Neiś gene diversity and the Shannonś index as follows: ISSR > RAPD ≈ LP-PCR > RGAP ≈ IRAP, with the highest and the lowest values differing 1.4 times. Genetic population structure was investigated with program Structure 2.3. The data of all marker systems suggest that all genomes under study belonged to one population. The PCoA and cluster analyses based on genetic distances showed distinctions in clustering generated from different markers data and summarized data, as well as the lack of strong clusters. Mantel test revealed significant positive correlation between the matrices of genetic distances generated by the data of almost all marker systems. The strongest correlation was found between RGAP- and IRAP-markers (r = 0.452, p = 0.01) and between RGAP and ISSR (r = 0.430, p = 0.01). ISSR, RAPD and LP-PCR proved to be more effective for the study of I. pumila genetic diversity, nevertheless, joint use of different marker systems will provide a more comprehensive assessment of variation in different genomic regions.

2018 ◽  
Vol 10 (4) ◽  
pp. 554-558
Author(s):  
Emre SEVİNDİK ◽  
Hüseyin UYSAL ◽  
Zehra Tuğba MURATHAN

Within the present study, it was conducted a genetic diversity analysis using ISSR markers for some apple genotypes grown in Ardahan region, Turkey. Total genomic DNA (gDNA) isolation from apple leaves was performed using commercial kits. Five ISSR primers were used to determine the genetic diversity among the genotypes studied. Polymerase Chain Reaction (PCR) was performed with all gDNA samples to produce bands to score. PCR products were run in agarose gel and visualized under UV light. Bands on the gels were scored as “1”, while no bands at the corresponding positions were scored as “0”, to generate the matrix file. Five ISSR primers produced a total of 35 bands, and 20 of them were polymorphic. The polymorphic bands rated approximately 57%. Phylogenetic relationships and genetic distances between the genotypes were calculated by using the PAUP [Phylogenetic Analysis Using Parsimony (and Other Methods)] program.  According to the PAUP data, the closest genetic distance was 0.03704 between ‘Kaburga’ and ‘Japon Apple’ genotypes, while the furthest genetic distance was 0.48148 between ‘Karanfil Apple’ and ‘Sisli Uruset’. The phylogenetic analysis obtained using UPGMA algorithm produced a phylogenetic tree with two clades. The results suggest that ISSR markers are useful tools for determining genetic relationships among apple genotypes.


Genetika ◽  
2018 ◽  
Vol 50 (1) ◽  
pp. 59-68
Author(s):  
Jalal Rezaei ◽  
Zare Mehrjerdi ◽  
Hassan Mastali

Melanocrommyum, a subgenus of the Allium genus, is found in different regions of Iran and is in danger of extinction due to excessive exploitation. This study aimed to determine the genetic diversity in 170 individuals representing 17 wild populations belonging to six endangered species of Allium subg. Melanocrommyum using inter simple sequence repeat (ISSR) markers. The 10 selected ISSR primers produced 178 polymorphic fragments (100%). Polymorphic band number varied from 12 (primer 8) to 22 (primer 2). The average observed number of alleles, effective number of alleles, Shannon?s indices and Nei?s gene diversity were 1.48, 1.2, 0.2 and 0.1, respectively. According to Nei?s genetic distance, the lowest genetic distance (0.048) was observed among both two populations of A. elburzense (Emamzadeh Ebrahim and Kamelat), and two populations of A. subakaka (Jame Shoran and Ghalelan) while the highest distance (0.097) was observed among a population of A. kurdistanicum (Taze Abad Oryeh) with both A. pseudobodeanum (Shen Jari), and A. derderianum (Dareh Oson) populations. In UPGMA cluster analysis, the populations were grouped into four main clusters at a cutoff value of 0.07. The analysis of molecular variance showed that the maximum value of genetic variation was found within the populations (68%), where as a low genetic differentiation was observed among the populations (32%). Our results revealed that ISSR molecular markers are useful to display the diversity in Allium genus and can be used to improve the classification accuracy. This study provided valuable information for the conservation of these species and breeding program planning.


2021 ◽  
Vol 8 (4) ◽  
pp. 86-94
Author(s):  
Jaleel Ahmad ◽  
Muhammad Baber ◽  
Wajid Nazeer ◽  
Sana Hamdullah ◽  
Aleena Ahmad Somroo

Genetic studies through molecular markers proved important to find out the genetic diversity of canola. In this study, 50 lines of canola were used to find the polymorphism using 15 SSR primers and investigated the genetic diversity, PIC values, frequency-based genetic distance, and allelic frequencies. Mean gene diversity, frequency-based genetic distance, and PIC values were 0.8777, 0.233 and 0.8666, respectively for the canola lines. A good range of genetic diversity was found among studied canola lines with value 85.91% polymorphism. Maximum and minimum genetic distances among 50 lines were 1 and 0.26, respectively. Accessions ACC-26068, ACC-24241, ACC-24244, ACC-24233, ACC-24423 and ACC-24224 have maximum genetic distance. Accessions ACC-24879 and ACC-24169 had minimum genetic distance i.e., 0.26. Dendrogram based on genetic distances showed four main clusters that were further dividing into several sub-clusters. The primers utilized in the present study, were valuable to identify different accessions of canola to find the variability present. This variability will be helpful to initiate the breeding program with their molecular genetic basis.


2021 ◽  
Author(s):  
Maria Duca ◽  
◽  
Ana Mutu ◽  
Ina Bivol ◽  
Steliana Clapco ◽  
...  

In this study, the effectiveness of different types of molecular markers in assessing genetic diversity of populations of O. cumana from China was determined. ISSR and SSR markers detected different levels of genetic variability among and within broomrape populations. SSR markers analysis showed high level of genetic variation within the populations as revealed by high average values of Nei's gene diversity (H=0,75) and Shannon's information index (I=1,44), while genotyping with ISSR markers showed greater ability to discriminate genotypes according to Resolving power (Rp=7,24). Thus, the combined use of ISSR and SSR markers allowed the detection of higher polymorphism than either set of marker alone.


2020 ◽  
Vol 33 (4) ◽  
pp. 1017-1024
Author(s):  
FRANCIVAL CARDOSO FELIX ◽  
KYVIA PONTES TEIXEIRA DAS CHAGAS ◽  
CIBELE DOS SANTOS FERRARI ◽  
FÁBIO DE ALMEIDA VIEIRA ◽  
MAURO VASCONCELOS PACHECO

ABSTRACT Pityrocarpa moniliformis (Benth.) Luckow & R. W. Jobson (Fabaceae) is a native brazilian species with high potential for economic development programs in semiarid regions, mainly related to the production of honey, animal food and firewood. Thus, the objective of this work was to select Inter-Simple Sequence Repeat (ISSR) molecular markers for genetic diversity studies, as well as to test the efficiency of this approach in quantifying the genetic diversity of a natural P. moniliformis population. For this, 28 ISSR molecular markers were tested, evaluating the total number of loci, polymorphism rate and the Polymorphism Information Content (PIC) for the selected primers, the “Marker Index”, and the “Resolving Power”. Genetic diversity parameters (Nei genetic distance and Shannon index) were evaluated for 30 individuals located in Macaíba, Rio Grande do Norte State, Brazil. Seven primers were selected, which provided 74 loci, with 82% being polymorphic, while the PIC value was 0.344. The Nei genetic distance was 0.244, and the Shannon index was 0.374. Therefore, ISSR molecular markers (UBC 827, 840, 844, 857, 859, 860 and 873) are considered efficient in studying the genetic diversity of populations for the selection of matrices and germplasm banks, and may contribute to the conservation and genetic improvement of P. moniliformis populations.


2015 ◽  
Vol 46 (4) ◽  
pp. 145-153 ◽  
Author(s):  
M. Ocelák ◽  
P. Hlásná Čepková ◽  
I. Viehmannová ◽  
Z. Dvořáková ◽  
D.C. Huansi ◽  
...  

Abstract The diversity and genetic relationships in 173 sacha inchi samples were analyzed using ISSR markers. Thirty ISSR primers were used, only 8 showed variability in tested samples. ISSR fragments ranged from 200 to 2500 bp. The mean number of bands per primer was 12 and the average number of polymorphic bands per primer was 11. The lowest percentages of polymorphic bands (27%), gene diversity (0.103), and Shannon’s information index (0.15) were exhibited by the Santa Lucia population, which was also geographically most distant. This fact may be attributed to a very small size of this group. In contrast, the Dos de Mayo population exhibited the highest percentage of polymorphic bands (78%), and the Santa Cruz population the highest Nei’s gene diversity index (0.238) and Shannon’s information index (0.357). The obtained level of genetic variability was 36% among tested populations and 64% within populations. Although the diversity indices were low, a cluster analysis revealed 8 clusters containing mainly samples belonging to individual populations. Principal coordinate analysis clearly distinguished Chumbaquihui, Pucallpa, Dos de Mayo, and Aguas de Oro populations, the others were intermixed. The obtained results indicated the level of genetic diversity present in this location of Peru, although it is influenced by anthropological aspects and independent on the geographical distances.


Author(s):  
Ghazal Ghobadi ◽  
Alireza Etminan ◽  
Ali Mehras Mehrabi ◽  
Lia Shooshtari

Abstract Background Evaluation of genetic diversity and relationships among crop wild relatives is an important task in crop improvement. The main objective of the current study was to estimate molecular variability within the set of 91 samples from Triticum aestivum, Aegilops cylindrica, and Aegilops crassa species using 30 CAAT box–derived polymorphism (CBDP) and start codon targeted (SCoT) markers. Results Fifteen SCoT and Fifteen CBDP primers produced 262 and 298 fragments which all of them were polymorphic, respectively. The number of polymorphic bands (NPB), polymorphic information content (PIC), resolving power (Rp), and marker index (MI) for SCoT primers ranged from 14 to 23, 0.31 to 0.39, 2.55 to 7.49, and 7.56 to 14.46 with an average of 17.47, 0.34, 10.44, and 5.69, respectively, whereas these values for CBDP primers were 15 to 26, 0.28 to 0.36, 3.82 to 6.94, and 4.74 to 7.96 with a mean of 19.87, 0.31, 5.35, and 6.24, respectively. Based on both marker systems, analysis of molecular variance (AMOVA) indicated that the portion of genetic diversity within species was more than among them. In both analyses, the highest values of the number of observed (Na) and effective alleles (Ne), Nei’s gene diversity (He), and Shannon’s information index (I) were estimated for Ae. cylindrica species. Conclusion The results of cluster analysis and population structure showed that SCoT and CBDP markers grouped all samples based on their genomic constitutions. In conclusion, the used markers are very effective techniques for the evaluation of the genetic diversity in wild relatives of wheat.


2011 ◽  
Vol 343-344 ◽  
pp. 981-987
Author(s):  
Feng Juan Li ◽  
Chang Lu Wang ◽  
Dong He ◽  
Ya Qiong Liu ◽  
Mian Hua Chen ◽  
...  

RAPD markers are used to study the genetic diversity of the main planting on 37 castor varieties widely cultivated in china according to the oil content and other characteristic of different castor varieties. Genetic distance of 37 Chinese castor varieties is studied by RAPD markers analysis. RAPD analysis shows that a total of 122 bands are amplified from random primers of 20 S series, including 71 polymorphic bands with polymorphic rate of 58.20%. 37 castor beans are divided into four major groups in the phylogenetic tree. One castor germplasm is included in1, 2, 3 groups respectively, and two sub-groups are included in the 4 major group.


2021 ◽  
Vol 43 (1) ◽  
pp. 38-42
Author(s):  
Kavungal Priya ◽  
◽  
Indira . ◽  
Vadakkethil Balakrishnan Sreekumar ◽  
Renuka . ◽  
...  

Calamus brandisii Becc. is one of the endemic slender rattans found in the Western Ghats of India. The genetic diversity of two main populations available in Kerala was investigated using 20 RAPD and 9 ISSR markers. Two parameters viz., gene diversity and genetic diversity within and among populations were analyzed. ISSR analysis showed quite high genetic diversity in Pandimotta compared to Bonacaud population whereas in RAPD markers both these populations were moderately diverse. The percentage of total genetic differentiation (Gst) among two populations is relatively higher than the mean Gst value indicating high genetic diversity within the populations. The genetic distance between these two populations was 0.1739 with ISSR markers and 0.1971 with RAPD markers. Because of its high genetic diversity, Pandimotta population can be treated as an important population of gene diversity with potentially useful genes. This may be included in the high priority reservoir for genetic conservation also.


Author(s):  
Rezq Basheer-Salimia

Abstract: In Palestine, grape culture consists of ecotypes and cultivars (also called local varieties), for which a large number of homonymous and synonymous designations exist as well as misnaming of cultivars. The present study is the first report using detailed ampelographic characterizations (39 informative traits) to assess genetic diversity and detect similarities among sixteen accessions collected from putative diverse grape genotypes In general, 30 descriptors presented highly and satisfactory divergent genotypes, whereas the remaining traits showed no or very little ampelographic variation. Based on the similarity matrix and the resulting dendrogram of these ampelographic data, distinguishable genotypes as well as some cases of synonymies and homonymies clearly exist. A synonymy case seemed to be in four genotypes including Jandali-Mfarad, Jan-dali-Mrazraz, Jandali, and Hamadani-Mattar, which indeed showed genetic distances of less than 0.5, sug-gesting their relatedness, and the possibility that they are the same genotype, but with different names. In addition, homonym cases also occur in the following pairs of “Marawi’s, Hamadani’s, and Zaini’s genotypes, in which each pair seems to be two distinctive genotypes. Finally, among the 16 examined genotypes, the Zaini-Baladi genotype tended to show the highest genetic distance values from the others and thus could be potentially incorporated into any further local or regional breeding programs as well as germplasm conservation.


Sign in / Sign up

Export Citation Format

Share Document