Ampelographic characterization of white grapevine cul-tivars (Vitis vinifera L.) grown in Palestine

Author(s):  
Rezq Basheer-Salimia

Abstract: In Palestine, grape culture consists of ecotypes and cultivars (also called local varieties), for which a large number of homonymous and synonymous designations exist as well as misnaming of cultivars. The present study is the first report using detailed ampelographic characterizations (39 informative traits) to assess genetic diversity and detect similarities among sixteen accessions collected from putative diverse grape genotypes In general, 30 descriptors presented highly and satisfactory divergent genotypes, whereas the remaining traits showed no or very little ampelographic variation. Based on the similarity matrix and the resulting dendrogram of these ampelographic data, distinguishable genotypes as well as some cases of synonymies and homonymies clearly exist. A synonymy case seemed to be in four genotypes including Jandali-Mfarad, Jan-dali-Mrazraz, Jandali, and Hamadani-Mattar, which indeed showed genetic distances of less than 0.5, sug-gesting their relatedness, and the possibility that they are the same genotype, but with different names. In addition, homonym cases also occur in the following pairs of “Marawi’s, Hamadani’s, and Zaini’s genotypes, in which each pair seems to be two distinctive genotypes. Finally, among the 16 examined genotypes, the Zaini-Baladi genotype tended to show the highest genetic distance values from the others and thus could be potentially incorporated into any further local or regional breeding programs as well as germplasm conservation.

Author(s):  
Rezq Basheer-Salimia

Abstract: In Palestine, grape culture consists of ecotypes and cultivars (also called local varieties), for which a large number of homonymous and synonymous designations exist as well as misnaming of cultivars. The present study is the first report using detailed ampelographic characterizations (39 informative traits) to assess genetic diversity and detect similarities among sixteen accessions collected from putative diverse grape genotypes In general, 30 descriptors presented highly and satisfactory divergent genotypes, whereas the remaining traits showed no or very little ampelographic variation. Based on the similarity matrix and the resulting dendrogram of these ampelographic data, distinguishable genotypes as well as some cases of synonymies and homonymies clearly exist. A synonymy case seemed to be in four genotypes including Jandali-Mfarad, Jan-dali-Mrazraz, Jandali, and Hamadani-Mattar, which indeed showed genetic distances of less than 0.5, sug-gesting their relatedness, and the possibility that they are the same genotype, but with different names. In addition, homonym cases also occur in the following pairs of “Marawi’s, Hamadani’s, and Zaini’s genotypes, in which each pair seems to be two distinctive genotypes. Finally, among the 16 examined genotypes, the Zaini-Baladi genotype tended to show the highest genetic distance values from the others and thus could be potentially incorporated into any further local or regional breeding programs as well as germplasm conservation.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260651
Author(s):  
Sintayehu Admas ◽  
Kassahun Tesfaye ◽  
Teklehaimanot Haileselassie ◽  
Eleni Shiferaw ◽  
K. Colton Flynn

Evaluation of the genetic diversity and an understanding of the genetic structure and relationships of chickpea genotypes are valuable to design efficient germplasm conservation strategies and crop breeding programs. Information is limited, in these regards, for Ethiopian chickpea germplasms. Therefore, the present study was carried out to estimate the genetic diversity, population structure, and relationships of 152 chickpea genotypes using simple sequence repeats (SSR) markers. Twenty three SSR markers exhibited polymorphism producing a total of 133 alleles, with a mean of 5.8 alleles per locus. Analyses utilizing various genetic-based statistics included pairwise population Nei’s genetic distance, heterozygosity, Shannon’s information index, polymorphic information content, and percent polymorphism. These analyses exemplified the existence of high genetic variation within and among chickpea genotypes. The 152 genotypes were divided into two major clusters based on Nei’s genetic distances. The exotic genotypes were grouped in one cluster exclusively showing that these genotypes are distinct to Ethiopian genotypes, while the patterns of clustering of Ethiopian chickpea genotypes based on their geographic region were not consistent because of the seed exchange across regions. Model-based population structure clustering identified two discrete populations. These finding provides useful insight for chickpea collections and ex-situ conservation and national breeding programs for widening the genetic base of chickpea.


2011 ◽  
Vol 68 (1) ◽  
pp. 42-49 ◽  
Author(s):  
Patrícia Coelho de Souza Leão ◽  
Cosme Damião Cruz ◽  
Sérgio Yoshimitsu Motoike

The conservation and characterization of grape (Vitis spp) genetic resources in germplasm banks have been the basis of its use in breeding programs that result in development of new cultivars. There are at least 10,000 grape cultivars kept in germplasm collection. The genetic diversity in 136 table grape accessions from the state of Bahia, Brazil, was evaluated. Continuous and discrete morphoagronomic traits were assessed. The clustering analysis by the Tocher otimization method resulted in 30 clusters (considering continuous morphoagronomic traits), and 9 clusters (taking into consideration multicategorical traits). There was no agreement between clusters obtained by both, continuous or discrete phenotypic descriptors, independent of the cluster method analysis used. A satisfactory genetic variability among the table grape accessions was observed.


2012 ◽  
Vol 40 (2) ◽  
pp. 247
Author(s):  
Soheila GHOLIZADEH ◽  
Reza DARVISHZADEH ◽  
Babak ABDOLLAHI MANDOULAKANI ◽  
Iraj BERNOUSI ◽  
Seyed Reza ALAVI ◽  
...  

Characterization of genetic diversity has long been a major goal in tobacco breeding programs. Information on genetic diversity is essential for a rational use of genetic resources. In the present study, the genetic variation among 72 flue-cured tobacco genotypes was evaluated using microsatellite markers (SSRs). A set of 104 alleles was generated at 30 SSR loci. The mean number of alleles per locus (na) and the effective allele number (ne) were 3.467 and 2.358, respectively. The expected heterozygosity ranged from 0.29 to 0.75 with average of 0.54. Several methods were used to construct the similarity matrices and dendrograms. The co-phenetic correlation coefficient, which is a measure of the correlation between the similarities represented on the dendrograms and the actual degree of similarity, was calculated for each dendrogram. Among the different methods, the highest value (r=0.76368) was observed for the UPGMA created based on Jaccard’s similarity coefficients. The genetic similarity among the tobacco genotypes calculated by using Jaccard’s similarity coefficient ranged from 0.08 to 0.84, suggesting the presence of high molecular genetic variability among the studied tobacco genotypes. Based on UPGMA clustering method all studied flue-cured tobacco genotypes, except for ‘Glustinusa Rasht’, were placed in three distinct groups. We observed an obvious heterotic pattern in the studied flue-cured germplasm corresponding to genetic distances and classification dendrogram, which persuades exploitation of heterosis in flue-cured tobaccos.


2008 ◽  
Vol 88 (2) ◽  
pp. 307-312
Author(s):  
Zhao Mengli ◽  
Han Bing ◽  
Walter D Willms

Mountain rough fescue (Festuca campestris Rydb.) is a tufted native grass in southern Alberta and British Columbia, Canada, and has attracted interest for use in reclamation. However, its seed is often available from only a few localized sources and may not be adapted for areas removed from the collection site. We conducted a study to determine the genetic variability among rough fescue populations to assess its potential adaptation. Thirty plants were collected from each of six populations and analyzed using Random Amplified Polymorphic DNA (RAPD). One population (Kamloops, BC) was separated by several mountain ranges from the five easterly Alberta populations.The Kamloops population was also separated from the Alberta populations by genetic distance in two clusters. Of the total genetic variation present in the data, 21% was found among populations while the remaining (79%) was found within populations. Nei’s genetic distances among populations were related to their geographical distances. Genetic differences among populations appeared to be caused primarily by differences in gene frequencies rather than rare genes. Also, genetic diversity appeared to increase from west to east suggesting that the more easterly populations had greater adaptation potential. We speculate that the more easterly populations are less likely to share genes since the prevailing winds are from the west. Germplasm from the more easterly populations may be used with suitable precautions within Alberta and possibly around Kamloops. Key words: Genetic distance, geographic distance, reclamation, potential adaptation


2012 ◽  
Vol 30 (1) ◽  
pp. 106-111 ◽  
Author(s):  
Raquel SC Nunes ◽  
Fernanda R Pinhati ◽  
Luciana P Golinelli ◽  
Tiyoko Nair H Rebouças ◽  
Vânia Margaret F Paschoalin ◽  
...  

Taro (Colocasia esculenta) is a tuberous plant belonging to the Araceae family whose tuber is the 14th most consumed food crop in the world. Characterized as an unconventional vegetable, taro is grown in Brazil as a subsistence crop, but in recent years began to gain commercial importance, especially in the states of Espirito Santo, Minas Gerais and Rio de Janeiro. To avoid loss of genetic diversity of the local varieties traditionally grown in Brazil a core collection for taro germplasm has been developed by the Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural do estado do Espirito Santo (Incaper). The aim of this study was to perform a molecular characterization of the seven regional core collections. Genetic diversity of the cultivars was investigated by using SSR (Simple Sequence Repeats) polymorphisms, in seven loci (Xuqtem55, Xuqtem73, Xuqtem84, Xuqtem88, Xuqtem91, Xuqtem97 and Xuqtem110). Genetic diversity of the cultivars, based on the seven microsatellite alleles, was evaluated by using the software GelCompar II, showed that the loci Xuqtem73, Xuqtem88 and Xuqtem110 were the most informative, featuring 7, 10 and 8 alleles, respectively, a percentage of cultivars with polymorphic alleles of 85, 57 and 100% and identical PIC of 0.91. Based on Xuqtem110 locus analysis, the seven cultivars were grouped in two clusters. Chinês Regional Incaper cultivar was originated from Chinês cultivar which originated the São Bento cultivar, corroborating previous results. Macaquinho and Chinês cultivars were shown to be the primitive ones originating the allelic collections found in the states of Mato Grosso do Sul and Espirito Santo.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Sirlene Viana de Faria ◽  
Leandro Tonello Zuffo ◽  
Wemerson Mendonça Rezende ◽  
Diego Gonçalves Caixeta ◽  
Hélcio Duarte Pereira ◽  
...  

Abstract Background The characterization of genetic diversity and population differentiation for maize inbred lines from breeding programs is of great value in assisting breeders in maintaining and potentially increasing the rate of genetic gain. In our study, we characterized a set of 187 tropical maize inbred lines from the public breeding program of the Universidade Federal de Viçosa (UFV) in Brazil based on 18 agronomic traits and 3,083 single nucleotide polymorphisms (SNP) markers to evaluate whether this set of inbred lines represents a panel of tropical maize inbred lines for association mapping analysis and investigate the population structure and patterns of relationships among the inbred lines from UFV for better exploitation in our maize breeding program. Results Our results showed that there was large phenotypic and genotypic variation in the set of tropical maize inbred lines from the UFV maize breeding program. We also found high genetic diversity (GD = 0.34) and low pairwise kinship coefficients among the maize inbred lines (only approximately 4.00 % of the pairwise relative kinship was above 0.50) in the set of inbred lines. The LD decay distance over all ten chromosomes in the entire set of maize lines with r2 = 0.1 was 276,237 kb. Concerning the population structure, our results from the model-based STRUCTURE and principal component analysis methods distinguished the inbred lines into three subpopulations, with high consistency maintained between both results. Additionally, the clustering analysis based on phenotypic and molecular data grouped the inbred lines into 14 and 22 genetic divergence clusters, respectively. Conclusions Our results indicate that the set of tropical maize inbred lines from UFV maize breeding programs can comprise a panel of tropical maize inbred lines suitable for a genome-wide association study to dissect the variation of complex quantitative traits in maize, mainly in tropical environments. In addition, our results will be very useful for assisting us in the assignment of heterotic groups and the selection of the best parental combinations for new breeding crosses, mapping populations, mapping synthetic populations, guiding crosses that target highly heterotic and yielding hybrids, and predicting untested hybrids in the public breeding program UFV.


2018 ◽  
Vol 10 (4) ◽  
pp. 554-558
Author(s):  
Emre SEVİNDİK ◽  
Hüseyin UYSAL ◽  
Zehra Tuğba MURATHAN

Within the present study, it was conducted a genetic diversity analysis using ISSR markers for some apple genotypes grown in Ardahan region, Turkey. Total genomic DNA (gDNA) isolation from apple leaves was performed using commercial kits. Five ISSR primers were used to determine the genetic diversity among the genotypes studied. Polymerase Chain Reaction (PCR) was performed with all gDNA samples to produce bands to score. PCR products were run in agarose gel and visualized under UV light. Bands on the gels were scored as “1”, while no bands at the corresponding positions were scored as “0”, to generate the matrix file. Five ISSR primers produced a total of 35 bands, and 20 of them were polymorphic. The polymorphic bands rated approximately 57%. Phylogenetic relationships and genetic distances between the genotypes were calculated by using the PAUP [Phylogenetic Analysis Using Parsimony (and Other Methods)] program.  According to the PAUP data, the closest genetic distance was 0.03704 between ‘Kaburga’ and ‘Japon Apple’ genotypes, while the furthest genetic distance was 0.48148 between ‘Karanfil Apple’ and ‘Sisli Uruset’. The phylogenetic analysis obtained using UPGMA algorithm produced a phylogenetic tree with two clades. The results suggest that ISSR markers are useful tools for determining genetic relationships among apple genotypes.


2014 ◽  
Vol 9 (8) ◽  
pp. 761-767
Author(s):  
Ivana Dokupilová ◽  
Daniele Migliaro ◽  
Daniel Mihálik ◽  
Manna Crespan ◽  
Ján Kraic

AbstractMicrosatellites were used as a very effective tool for genetic diversity analysis and characterization of 51 grapevine (Vitis vinifera L.) accessions from the national collection of genetic resources. Genetic diversity was relatively high, 8.91 alleles were detected per analysed microsatellite locus in average, and fifty-one accessions were distinguished into 45 groups. Distribution of recent Slovak cultivars across the dendrogram accented both their genetic diversity and the effectiveness of the national breeding program in maintaining genetic diversity and generating new genetic variants. Each cultivar was different from the others and twelve of them contained 77.6% of the total genetic diversity of the whole analysed set. Microsatellite patterns were also able to confirm parentage in selected Slovak cultivars. An unusual phenomenon of triallelism was also detected in one of the analysed accessions. The present study has initiated molecular characterization within the national grapevine genetic resource collection and their comparison with well-established international cultivars.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0255418
Author(s):  
Siou Ting Gan ◽  
Chin Jit Teo ◽  
Shobana Manirasa ◽  
Wei Chee Wong ◽  
Choo Kien Wong

Oil palm (Elaeis guineensis) germplasm is exclusively maintained as ex situ living collections in the field for genetic conservation and evaluation. However, this is not for long term and the maintenance of field genebanks is expensive and challenging. Large area of land is required and the germplasms are exposed to extreme weather conditions and casualty from pests and diseases. By using 107 SSR markers, this study aimed to examine the genetic diversity and relatedness of 186 palms from a Nigerian-based oil palm germplasm and to identify core collection for conservation. On average, 8.67 alleles per SSR locus were scored with average effective number of alleles per population ranging from 1.96 to 3.34 and private alleles were detected in all populations. Mean expected heterozygosity was 0.576 ranging from 0.437 to 0.661 and the Wright’s fixation index calculated was -0.110. Overall moderate genetic differentiation among populations was detected (mean pairwise population FST = 0.120, gene flow Nm = 1.117 and Nei’s genetic distance = 0.466) and this was further confirmed by AMOVA analysis. UPGMA dendogram and Bayesian structure analysis concomitantly clustered the 12 populations into eight genetic groups. The best core collection assembled by Core Hunter ver. 3.2.1 consisted of 58 palms accounting for 31.2% of the original population, which was a smaller core set than using PowerCore 1.0. This core set attained perfect allelic coverage with good representation, high genetic distance between entries, and maintained genetic diversity and structure of the germplasm. This study reported the first molecular characterization and validation of core collections for oil palm field genebank. The established core collection via molecular approach, which captures maximum genetic diversity with minimum redundancy, would allow effective use of genetic resources for introgression and for sustainable oil palm germplasm conservation. The way forward to efficiently conserve the field genebanks into next generation without losing their diversity was further discussed.


Sign in / Sign up

Export Citation Format

Share Document