Comparative phosphate solubilizing efficiency of psychrotolerant Pseudomonas jesenii MP1 and Acinetobacter sp. ST02 against chickpea for sustainable hill agriculture

Biologia ◽  
2018 ◽  
Vol 73 (8) ◽  
pp. 793-802 ◽  
Author(s):  
Jyoti Rajwar ◽  
Ramesh Chandra ◽  
Deep Chandra Suyal ◽  
Supriya Tomer ◽  
Saurabh Kumar ◽  
...  
2007 ◽  
Vol 62 (1-2) ◽  
pp. 103-110 ◽  
Author(s):  
Md. Tofazzal Islam ◽  
Abhinandan Deora ◽  
Yasuyuki Hashidoko ◽  
Atiqur Rahman ◽  
Toshiaki Ito ◽  
...  

A total of 30 bacteria were isolated from the rhizoplane of rice cv. BR29 cultivated in Mymensingh, Bangladesh and from the seedlings obtained from surface-sterilized seeds of BR29. Upon screening, 6 isolates showed varying levels of phosphate solubilizing activity in both agar plate and broth assays using National Botanical Research Institute’s phosphate medium. The bacterial isolates were identified based on their phenotypic and 16S rRNA genes sequencing data as Acinetobacter sp. BR-12, Klebsiella sp. BR-15, Acinetobacter sp. BR-25, Enterobacter sp. BR-26, Microbacterium sp. BRS-1 and Pseudomonas sp. BRS-2. The BR-25 exhibited highest phosphate solubilizing activity followed by BR-15. They grew rapidly in the liquid medium at pH 5 and 7 but almost no growth occurred at pH 3. The pH value of the culture medium was decreased with bacterial growth suggesting that they might secrete organic acids to solubilize insoluble phosphorus. Scanning electron microscope analysis of two-week-old rice seedlings germinated from seeds previously inoculated with BR-25 and BR-15 revealed dense colonization at the root surfaces presumably using fimbriae on the bacterial cells.


Author(s):  
C. L. Scott ◽  
W. R. Finnerty

Acinetobacter sp. HO-1-N, a gram-negative hydrocarbon oxidizing bacterium previously designated Micrococcus cerificans, has been shown to sequester the hydrocarbon into intracytoplasmic pools as a result of growth on this substrate. In hydrocarbon grown cells, an intracytoplasmic membrane system was also observed along with a doubling of cellular phospholipids (Z). However, using conventional dehydration and embedding procedures in preparing thin sectioned material, the hydrocarbon is extracted from the cells. This may lead to structural distortion, consequently, the freeze-etch technique was applied to preserve the integrity of the cell.


2012 ◽  
Vol 3 (1) ◽  
pp. 172-174
Author(s):  
Pragya Rathore ◽  
◽  
Nandini Phanse ◽  
Bhavesh Patel

2018 ◽  
Vol 6 (3) ◽  
Author(s):  
Suliasih Suliasih

A study was undertaken to investigate to occurance of phosphate solubilizing bacteria from rhizosphere soil samples of medicine plants in Cibodas Botanical Garden. 13 soil samples of medicine plants are collected randomly The result shows that 71 isolates of phosphate solubilizing bacteria were isolated, and 10 species of these organism was identified as Azotobacter sp, Bacillus sp, Chromobacterium sp, C.violaceum, Citrobacter sp. , Enterobacter sp., E. liquefaciens. Nitrosomonas sp., Serratia rubidaea, Sphaerotillus natans. Azotobacter sp. And Bacillus sp. Are found in all of soil tested. Conversely, Serratia rubidaea is only in the sample from rhizosphere of Plantago mayor The activity of acid alkaline phosphatase in soil tested ranged from 0.78 – 60,18 ugp nitrophenole/g/h, with the higest values being recorded in soil sample from rhizosphere of “Lavender”.Keywords : phosphate solubilizing bacteria, soil enzyme phosphatase


Sign in / Sign up

Export Citation Format

Share Document