Quasistationary current contributions in electronic devices

2007 ◽  
Vol 15 (1) ◽  
Author(s):  
K. Neyts ◽  
J. Beeckman ◽  
F. Beunis

AbstractIn an electronic device, the current supplied to the electrodes is related to different types of processes inside the device: current density, change in spontaneous polarization, and change in dielectric properties. Two expressions for the electrode current are derived: one is based on the time derivative of the Shockley-Ramo theorem, the other on the time derivative of the dielectric tensor. This result is illustrated for a switching liquid crystal device and a two-dimensional flux tube.

MRS Bulletin ◽  
1991 ◽  
Vol 16 (1) ◽  
pp. 38-45 ◽  
Author(s):  
Patrick Oswald ◽  
John Bechhoefer ◽  
Francisco Melo

Liquid crystals, discovered just a century ago, have wide application to electrooptic displays and thermography. Their physical properties have also made them fascinating materials for more fundamental research.The name “liquid crystals” is actually a misnomer for what are more properly termed “mesophases,” that is, phases having symmetries intermediate between ordinary solids and liquids. There are three major classes of liquid crystals: nematics, smectics, and columnar mesophases. In nematics, although there is no correlation between positions of the rodlike molecules, the molecules tend to lie parallel along a common axis, labeled by a unit vector (or director) n. Smectics are more ordered. The molecules are also rodlike and are in layers. Different subtypes of smectics (labeled, for historical reasons, smectic A, smectic B,…) have layers that are more or less organized. In the smectic A phase, the layers are fluid and can glide easily over each other. In the smectic B phase, the layers have hexagonal ordering and strong interlayer corrélations. Indeed, the smectic B phase is more a highly anisotropic plastic crystal than it is a liquid crystal. Finally, columnar mesophases are obtained with disklike molecules. These molecules can stack up in columns which are themselves organized in a two-dimensional array. There is no positional correlation between molecules in one column and molecules in the other columns.


2021 ◽  
Vol 13 (1) ◽  
pp. 131-140
Author(s):  
George PELIN

This paper presents an experimental study of the influence of nano metric silicon carbide in the composition of phenolic composites on the coefficient of friction. The paper is divided into three distinct parts investigating from a tribological point of view three different types of composite materials based on phenolic resin with three concentrations of nSiC (0.5; 1 and 2% by mass). In the first part, a comparative study of the behavior of phenolic resin was performed, representing the basis for the development of composite materials. In the second part, a study was performed on laminated materials reinforced with two-dimensional fabrics (glass fiber and carbon fiber, respectively). The last part studied two types of ablative phenolic materials based on micronic cork, on one hand, and on carbon felt on the other hand.


10.1068/b2676 ◽  
2000 ◽  
Vol 27 (4) ◽  
pp. 537-547 ◽  
Author(s):  
Allen Klinger ◽  
Nikos A Salingaros

In this paper we propose numerical measures for evaluating the aesthetic interest of simple patterns. The patterns consist of elements (symbols, pixels, etc) in regular square arrays. The measures depend on two characteristics of the patterns: the number of different types of element, and the number of symmetries in their arrangement. We define two complementary composite measures L and C for the degree of pattern in a design, and compute them here for 2 × 2 and 6 × 6 arrays. The results distinguish simple from high-variation cases. We suspect that the measure L corresponds to the degree that human beings intuitively feel a design to be “interesting”, so this model would aid in quantifying the visual connection of two-dimensional designs with viewers. The other composite measure C based on these numerical properties characterizes the extent of randomness of an array. Combining symbol variety with symmetry calculations allows us to employ hierarchical scaling to count the relative impact of different levels of scale. By identifying substructures we can distinguish between organized patterns and disorganized complexity. The measures described here are related to verbal descriptors derived from work by psychologists on responses to visual environments.


Author(s):  
J.L. Carrascosa ◽  
G. Abella ◽  
S. Marco ◽  
M. Muyal ◽  
J.M. Carazo

Chaperonins are a class of proteins characterized by their role as morphogenetic factors. They trantsiently interact with the structural components of certain biological aggregates (viruses, enzymes etc), promoting their correct folding, assembly and, eventually transport. The groEL factor from E. coli is a conspicuous member of the chaperonins, as it promotes the assembly and morphogenesis of bacterial oligomers and/viral structures.We have studied groEL-like factors from two different bacteria:E. coli and B.subtilis. These factors share common morphological features , showing two different views: one is 6-fold, while the other shows 7 morphological units. There is also a correlation between the presence of a dominant 6-fold view and the fact of both bacteria been grown at low temperature (32°C), while the 7-fold is the main view at higher temperatures (42°C). As the two-dimensional projections of groEL were difficult to interprete, we studied their three-dimensional reconstruction by the random conical tilt series method from negatively stained particles.


Author(s):  
P. Egger ◽  
C. Burmer

Abstract The area of embedded SRAMs in advanced logic ICs is increasing more and more. On the other hand smaller structure sizes and an increasing number of metal layers make conventional failure localization by using emission microscopy or liquid crystal inefficient. In this paper a SRAM failure analysis strategy will be presented independent on layout and technology.


Sign in / Sign up

Export Citation Format

Share Document