The structure of norm Clifford algebras

2012 ◽  
Vol 62 (6) ◽  
Author(s):  
Hans Keller ◽  
Herminia Ochsenius

AbstractOrthomodular Hilbertian spaces are infinite-dimensional inner product spaces (E, 〈·, ·〉) with the rare property that to every orthogonally closed subspace U ⊆ E there is an orthogonal projection from E onto U. These spaces, discovered about 30 years ago, are constructed over certain non-Archimedeanly valued, complete fields and are endowed with a non-Archimedean norm derived from the inner product. In a previous work [KELLER, H. A.—OCHSENIUS, H.: On the Clifford algebra of orthomodular spaces over Krull valued fields. In: Contemp. Math. 508, Amer. Math. Soc., Providence, RI, 2010, pp. 73–87] we described the construction of a new object, called the norm Clifford algebra C̃(E) associated to E. It can be considered a counterpart of the well-established Clifford algebra of a finite dimensional quadratic space. In contrast to the classical case, C̃(E) allows to represent infinite products of reflections by inner automorphisms. It is a significant step towards a better understanding of the group of isometries, which in infinite dimension is complex and hard to grasp.In the present paper we are concerned with the inner structure of these new algebras. We first give a canonical representation of the elements, and we prove that C̃ is always central. Then we focus on an outstanding special case in which C̃ is shown to be a division ring. Moreover, in that special case we completely describe the ideals of the corresponding valuation ring $$\mathcal{A}$$. It turns out, rather unexpectedly, that every left-ideal and every right-ideal of $$\mathcal{A}$$ is in fact bilateral.

2005 ◽  
Vol 15 (05n06) ◽  
pp. 1261-1272 ◽  
Author(s):  
WOLFGANG WOESS

Let L≀X be a lamplighter graph, i.e., the graph-analogue of a wreath product of groups, and let P be the transition operator (matrix) of a random walk on that structure. We explain how methods developed by Saloff-Coste and the author can be applied for determining the ℓp-norms and spectral radii of P, if one has an amenable (not necessarily discrete or unimodular) locally compact group of isometries that acts transitively on L. This applies, in particular, to wreath products K≀G of finitely-generated groups, where K is amenable. As a special case, this comprises a result of Żuk regarding the ℓ2-spectral radius of symmetric random walks on such groups.


Author(s):  
YONINA C. ELDAR ◽  
TOBIAS WERTHER

We introduce a general framework for consistent linear reconstruction in infinite-dimensional Hilbert spaces. We study stable reconstructions in terms of Riesz bases and frames, and generalize the notion of oblique dual frames to infinite-dimensional frames. As we show, the linear reconstruction scheme coincides with the so-called oblique projection, which turns into an ordinary orthogonal projection when adapting the inner product. The inner product of interest is, in general, not unique. We characterize the inner products and corresponding positive operators for which the new geometrical interpretation applies.


2020 ◽  
Vol 34 (03) ◽  
pp. 2742-2749
Author(s):  
Ringo Baumann ◽  
Gerhard Brewka ◽  
Markus Ulbricht

In his seminal 1995 paper, Dung paved the way for abstract argumentation, a by now major research area in knowledge representation. He pointed out that there is a problematic issue with self-defeating arguments underlying all traditional semantics. A self-defeat occurs if an argument attacks itself either directly or indirectly via an odd attack loop, unless the loop is broken up by some argument attacking the loop from outside. Motivated by the fact that such arguments represent self-contradictory or paradoxical arguments, he asked for reasonable semantics which overcome the problem that such arguments may indeed invalidate any argument they attack. This paper tackles this problem from scratch. More precisely, instead of continuing to use previous concepts defined by Dung we provide new foundations for abstract argumentation, so-called weak admissibility and weak defense. After showing that these key concepts are compatible as in the classical case we introduce new versions of the classical Dung-style semantics including complete, preferred and grounded semantics. We provide a rigorous study of these new concepts including interrelationships as well as the relations to their Dung-style counterparts. The newly introduced semantics overcome the issue with self-defeating arguments, and they are semantically insensitive to syntactic deletions of self-attacking arguments, a special case of self-defeat.


1997 ◽  
Vol 40 (2) ◽  
pp. 325-330
Author(s):  
Anthony J. Felton ◽  
H. P. Rogosinski

In this paper we generalise some of the results obtained in [1] for the n-dimensional real spaces ℓp(n) to the infinite dimensional real spaces ℓp. Let p >1 with p ≠ 2, and let x be a non-zero real sequence in ℓp. Let ε(x) denote the closed linear subspace spanned by the set of all those sequences in ℓp which are biorthogonal to x with respect to the unique semi-inner-product on ℓp consistent with the norm on ℓp. In this paper we show that codim ε(x)=1 unless either x has exactly two non-zero coordinates which are equal in modulus, or x has exactly three non-zero coordinates α, β, γ with |α| ≥ |β| ≥ |γ| and |α|p > |β|p + |γ|p. In these exceptional cases codim ε(x) = 2. We show that is a linear subspace if, and only if, x has either at most two non-zero coordinates or x has exactly three non-zero coordinates which satisfy the inequalities stated above.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
P. Rueda ◽  
E. A. Sánchez Pérez

We show a Dvoretzky-Rogers type theorem for the adapted version of theq-summing operators to the topology of the convergence of the vector valued integrals on Banach function spaces. In the pursuit of this objective we prove that the mere summability of the identity map does not guarantee that the space has to be finite dimensional, contrary to the classical case. Some local compactness assumptions on the unit balls are required. Our results open the door to new convergence theorems and tools regarding summability of series of integrable functions and approximation in function spaces, since we may find infinite dimensional spaces in which convergence of the integrals, our vector valued version of convergence in the weak topology, is equivalent to the convergence with respect to the norm. Examples and applications are also given.


Author(s):  
YONINA C. ELDAR ◽  
TOBIAS WERTHER

We introduce a general framework for consistent linear reconstruction in infinite-dimensional Hilbert spaces. We study stable reconstructions in terms of Riesz bases and frames, and generalize the notion of oblique dual frames to infinte-dimensional frames. As we show, the linear reconstruction scheme coincides with the so-called oblique projection, which turns into an ordinary orthogonal projection when adapting the inner product. The inner product of interest is, in general, not unique. We characterize the inner products and the corresponding positive operators for which this geometrical interpretation applies.


1980 ◽  
Vol 21 (2) ◽  
pp. 199-204 ◽  
Author(s):  
Earl Berkson ◽  
Horacio Porta

Let C be the complex plane, and U the disc |Z| < 1 in C. Cn denotes complex n-dimensional Euclidean space, <, > the inner product, and | · | the Euclidean norm in Cn;. Bn will be the open unit ball {z ∈ Cn:|z| < 1}, and Un will be the unit polydisc in Cn. For l ≤ p < ∞, p ≠ 2, Gp(Bn) (resp., Gp(Un)) will denote the group of all isometries of Hp(Bn) (resp., Hp(Un)) onto itself, where Hp(Bn) and HP(Un) are the usual Hardy spaces.


2019 ◽  
Vol 72 (4) ◽  
pp. 501-520 ◽  
Author(s):  
Zachary M Boyd ◽  
Emma M Schmidt ◽  
Scott D Ramsey ◽  
Roy S Baty

Summary As modern hydrodynamic codes increase in sophistication, the availability of realistic test problems becomes increasingly important. In gas dynamics, one common unrealistic aspect of most test problems is the ideal gas assumption, which is unsuited to many real applications, especially those involving high pressure and speed metal deformation. Our work considers the collapsing cavity and converging shock test problems, showing to what extent the ideal gas assumption can be removed from their specification. It is found that while most materials simply do not admit simple (that is scaling) solutions in this context, there are infinite-dimensional families of materials which do admit such solutions. We characterize such materials, derive the appropriate ordinary differential equations and analyze the associated nonlinear eigenvalue problem. It is shown that there is an inherent tension between boundedness of the solution, boundedness of its derivatives and the entropy condition. The special case of a constant-speed cavity collapse is considered and found to be heuristically possible, contrary to common intuition. Finally, we give an example of a concrete non-ideal collapsing cavity scaling solution based on a recently proposed pseudo-Mie–Gruneisen equation of state.


Sign in / Sign up

Export Citation Format

Share Document