scaling solution
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 6)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 81 (2) ◽  
Author(s):  
Llibert Aresté Saló ◽  
Jaume Haro

AbstractWe will show that for exponential type potentials of the form $$V(\varphi )\sim e^{-\gamma \varphi ^n/M_{pl}^n}$$ V ( φ ) ∼ e - γ φ n / M pl n , which are used to depict quintessential inflation, the solutions whose initial conditions take place during the slow roll phase in order to describe correctly the inflationary period, do not belong for large values of the parameter n to the basin of attraction of the scaling solution – a solution of the scalar field equation whose energy density scale as the one of the fluid component of the universe during radiation or the matter domination period –, meaning that a late time mechanism to exit this behavior and depict correctly the current cosmic acceleration is not needed. However, in such cases, namely n large enough, these potentials cannot correctly depict the current cosmic acceleration. This is the reason why the potential must be improved introducing another parameter -as the one in the well-known Peebles–Vilenkin quintessential inflation model, which depends on two parameters, one to describe inflation and the other one to correctly depict the present accelerated evolution – able to deal with the late time acceleration of our universe.


2020 ◽  
Vol 603 ◽  
pp. 118035 ◽  
Author(s):  
Yongjie Liu ◽  
Zhansheng Li ◽  
Zechun Xiao ◽  
Huabing Yin ◽  
Xuemei Li ◽  
...  

2019 ◽  
Author(s):  
G. Hall ◽  
Mansi M ◽  
Makrant I

Block-chain world is very dynamic and there is need for strong governance and underlying technology architecture to be robust to face challenges. This paper considers Ethereum, a leading block chain. We deep dive into the nature of this block chain, wherein for software upgrades forks are performed. They types of forks and impact is discussed. A specific Ethereum hack led to a hard fork and focus is provided on understanding the hack and overcoming it from a novel approach. The current model has been unable to handle multiple Ethereum attacks. Thus the current approach is compared against a novel approach providing a security and scaling solution. Here the architecture draws upon combining block-chain layers into operating system level. The approach can have tremendous benefits to block chain world and improve the way decentralized application teams perform. The benefits of the novel architecture is discussed. The approach helps safe guard block chain projects, making them safer and chain agnostic.


2019 ◽  
Vol 72 (4) ◽  
pp. 501-520 ◽  
Author(s):  
Zachary M Boyd ◽  
Emma M Schmidt ◽  
Scott D Ramsey ◽  
Roy S Baty

Summary As modern hydrodynamic codes increase in sophistication, the availability of realistic test problems becomes increasingly important. In gas dynamics, one common unrealistic aspect of most test problems is the ideal gas assumption, which is unsuited to many real applications, especially those involving high pressure and speed metal deformation. Our work considers the collapsing cavity and converging shock test problems, showing to what extent the ideal gas assumption can be removed from their specification. It is found that while most materials simply do not admit simple (that is scaling) solutions in this context, there are infinite-dimensional families of materials which do admit such solutions. We characterize such materials, derive the appropriate ordinary differential equations and analyze the associated nonlinear eigenvalue problem. It is shown that there is an inherent tension between boundedness of the solution, boundedness of its derivatives and the entropy condition. The special case of a constant-speed cavity collapse is considered and found to be heuristically possible, contrary to common intuition. Finally, we give an example of a concrete non-ideal collapsing cavity scaling solution based on a recently proposed pseudo-Mie–Gruneisen equation of state.


2019 ◽  
Vol 16 (02) ◽  
pp. 1950023 ◽  
Author(s):  
Rakesh Raushan ◽  
R. Chaubey

The present work deals with the dynamical evolution of LRS Bianchi type I (LRS BI) cosmological model with quadratic dark sector coupling. We investigate the phase-plane analysis of LRS BI model with dark energy, when dark energy is modeled as exponential quintessence, and is coupled to dark matter via energy exchange. The evolution of cosmological solutions are studied by using dynamical systems method. Stability and viability of the models are discussed for four different choices of quadratic dark sector coupling parameters. In each model, we have obtained a late-time accelerating fixed point (future attractor), which is not a scaling solution.


2017 ◽  
Vol 824 ◽  
pp. 785-817
Author(s):  
Aditya K. Aiyer ◽  
Kandaswamy Subramanian ◽  
Pallavi Bhat

An elegant model for passive scalar mixing and decay was given by Kraichnan (Phys. Fluids, vol. 11, 1968, pp. 945–953) assuming the velocity to be delta correlated in time. For realistic random flows this assumption becomes invalid. We generalize the Kraichnan model to include the effects of a finite correlation time, $\unicode[STIX]{x1D70F}$, using renewing flows. The generalized evolution equation for the three-dimensional (3-D) passive scalar spectrum $\hat{M}(k,t)$ or its correlation function $M(r,t)$, gives the Kraichnan equation when $\unicode[STIX]{x1D70F}\rightarrow 0$, and extends it to the next order in $\unicode[STIX]{x1D70F}$. It involves third- and fourth-order derivatives of $M$ or $\hat{M}$ (in the high $k$ limit). For small-$\unicode[STIX]{x1D70F}$ (or small Kubo number), it can be recast using the Landau–Lifshitz approach to one with at most second derivatives of $\hat{M}$. We present both a scaling solution to this equation neglecting diffusion and a more exact solution including diffusive effects. To leading order in $\unicode[STIX]{x1D70F}$, we first show that the steady state 1-D passive scalar spectrum, preserves the Batchelor (J. Fluid Mech., vol. 5, 1959, pp. 113–133) form, $E_{\unicode[STIX]{x1D703}}(k)\propto k^{-1}$, in the viscous–convective limit, independent of $\unicode[STIX]{x1D70F}$. This result can also be obtained in a general manner using Lagrangian methods. Interestingly, in the absence of sources, when passive scalar fluctuations decay, we show that the spectrum in the Batchelor regime at late times is of the form $E_{\unicode[STIX]{x1D703}}(k)\propto k^{1/2}$ and also independent of $\unicode[STIX]{x1D70F}$. More generally, finite $\unicode[STIX]{x1D70F}$ does not qualitatively change the shape of the spectrum during decay. The decay rate is however reduced for finite $\unicode[STIX]{x1D70F}$. We also present results from high resolution ($1024^{3}$) direct numerical simulations of passive scalar mixing and decay. We find reasonable agreement with predictions of the Batchelor spectrum during steady state. The scalar spectrum during decay is however dependent on initial conditions. It agrees qualitatively with analytic predictions when power is dominantly in wavenumbers corresponding to the Batchelor regime, but is shallower when box-scale fluctuations dominate during decay.


2017 ◽  
Vol 2 (3) ◽  
Author(s):  
Silvio Franz ◽  
Giorgio Parisi ◽  
Maxime Sevelev ◽  
Pierfrancesco Urbani ◽  
Francesco Zamponi

Random constraint satisfaction problems (CSP) have been studied extensively using statistical physics techniques. They provide a benchmark to study average case scenarios instead of the worst case one. The interplay between statistical physics of disordered systems and computer science has brought new light into the realm of computational complexity theory, by introducing the notion of clustering of solutions, related to replica symmetry breaking. However, the class of problems in which clustering has been studied often involve discrete degrees of freedom: standard random CSPs are random (aka disordered Ising models) or random coloring problems (aka disordered Potts models). In this work we consider instead problems that involve continuous degrees of freedom. The simplest prototype of these problems is the perceptron. Here we discuss in detail the full phase diagram of the model. In the regions of parameter space where the problem is non-convex, leading to multiple disconnected clusters of solutions, the solution is critical at the SAT/UNSAT threshold and lies in the same universality class of the jamming transition of soft spheres. We show how the critical behavior at the satisfiability threshold emerges, and we compute the critical exponents associated to the approach to the transition from both the SAT and UNSAT phase. We conjecture that there is a large universality class of non-convex continuous CSPs whose SAT-UNSAT threshold is described by the same scaling solution.


Sign in / Sign up

Export Citation Format

Share Document