scholarly journals Evaluation of Tunnel Contour Quality Index on the Basis of Terrestrial Laser Scanning Data

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Piotr Dybeł ◽  
Katarzyna Dybeł ◽  
Jerzy Cieślik

Abstract The Tunnel Contour Quality Index (TCI) is an index established by Kim and Bruland for an effective management of a tunnel contour quality. It is estimated on a basis of measurements of two contour profiles within a single blasting round, using a laser profiler. However, the representativeness of measurement results obtained that way for the assessment of a contour quality of the entire blasting round is disputable. Terrestrial laser scanning (TLS) technology, combined with available numerical surface modeling tools, enables development of three-dimensional models of a monitored surface. The article reports results of TCI calculations based on TLS data. The presented TLS technique is based not only on selected cross-sections of the tunnel contour but also on the description of the morphology of the tunnel contour surface. The case study concerns measurements of the “Mały Luboń” tunnel niche, located in Naprawa, Poland. The TCI values for three blasting rounds were determined in accordance with Kim and Bruland's guidelines and were compared to TCI values determined with the proposed TLS technique. On a basis of this comparison, it can be concluded that the results obtained with the TLS technique are more reliable and representative for description of the contour quality of the entire blasting round than results obtained with the laser profiling technique.

Author(s):  
Hatice Çiğdem ZAĞRA ◽  
Sibel ÖZDEN

Aim: This study aims to comparatively evaluate the use potential of orthophoto images obtained by terrestrial laser scanning technologies on an urban scale through the "Old Lapseki Finds Life Project" prepared using terrestrial laser scanning technologies and the "Enez Historical City Square Project" prepared using traditional methods. Method: In the study, street improvement projects of 29.210 m2 Lapseki and 29.214 m2 Enez city designed on an urban scale were evaluated and compared with descriptive statistics based on different parameters. Results: In the study, it has been determined that terrestrial laser (point cloud) technologies are 99,9% accurate when compared to traditional methods, save time by 83,08% and reduce workforce by 80%. In addition, it has been determined that terrestrial laser scanning technologies accelerate project processes compared to traditional methods. Conclusion: In this study, the use of laser scanning technologies, which are basically reverse engineering applications, in architectural restoration projects, determination of the current situation and damage, architectural documentation of structures and preparation of three-dimensional models, in terms of efficiency in survey studies are evaluated. It has been observed that orthophoto images obtained by terrestrial laser scanning technologies in architectural relief-restoration-restitution projects have potentials' worth using in different stages of the project.


Author(s):  
P. Delis ◽  
M. Wojtkowska ◽  
P. Nerc ◽  
I. Ewiak ◽  
A. Lada

Textured three dimensional models are currently the one of the standard methods of representing the results of photogrammetric works. A realistic 3D model combines the geometrical relations between the structure’s elements with realistic textures of each of its elements. Data used to create 3D models of structures can be derived from many different sources. The most commonly used tool for documentation purposes, is a digital camera and nowadays terrestrial laser scanning (TLS). Integration of data acquired from different sources allows modelling and visualization of 3D models historical structures. Additional aspect of data integration is possibility of complementing of missing points for example in point clouds. The paper shows the possibility of integrating data from terrestrial laser scanning with digital imagery and an analysis of the accuracy of the presented methods. The paper describes results obtained from raw data consisting of a point cloud measured using terrestrial laser scanning acquired from a Leica ScanStation2 and digital imagery taken using a Kodak DCS Pro 14N camera. The studied structure is the ruins of the Ilza castle in Poland.


Author(s):  
P. Delis ◽  
M. Wojtkowska ◽  
P. Nerc ◽  
I. Ewiak ◽  
A. Lada

Textured three dimensional models are currently the one of the standard methods of representing the results of photogrammetric works. A realistic 3D model combines the geometrical relations between the structure’s elements with realistic textures of each of its elements. Data used to create 3D models of structures can be derived from many different sources. The most commonly used tool for documentation purposes, is a digital camera and nowadays terrestrial laser scanning (TLS). Integration of data acquired from different sources allows modelling and visualization of 3D models historical structures. Additional aspect of data integration is possibility of complementing of missing points for example in point clouds. The paper shows the possibility of integrating data from terrestrial laser scanning with digital imagery and an analysis of the accuracy of the presented methods. The paper describes results obtained from raw data consisting of a point cloud measured using terrestrial laser scanning acquired from a Leica ScanStation2 and digital imagery taken using a Kodak DCS Pro 14N camera. The studied structure is the ruins of the Ilza castle in Poland.


Author(s):  
Y. Zhou ◽  
Z. Dong ◽  
P. Tong ◽  
B. Yang

Abstract. The quality of tunnel excavation is evaluated by comparing the excavated tunnel and the design model. Terrestrial laser scanning (TLS) provides surveyors with dense and accurate three-dimensional (3D) point clouds for excavation model reconstruction. However, sufficient attention has not been paid to incorporating design models for tunnel point cloud processing. In this paper, a technical framework that combines TLS point clouds and the design model for tunnel excavation evaluation is proposed. Firstly, the point clouds are sliced into cross-sections and the feature points are accordingly extracted. Then, considering the structure of the design model, feature point deficiencies are repaired by topological and parametric model interpolation. Finally, the excavation quality is evaluated in terms of the deviation of centerlines and 3D models. This method is validated in the case study. Experiments show that the deviation of centerline azimuth is acceptable but there remain considerable overbreak and underbreak, which respectively account for 20.6% and 11.2% of the design excavation volume.


2018 ◽  
Vol 14 (11) ◽  
pp. 155014771881413 ◽  
Author(s):  
Xiangyang Xu ◽  
Hao Yang

The complexity of structural materials is increasing the importance of the technology for high accuracy measurement. How to obtain the displacement information of structural feature points accurately and efficiently is the key issue of deformation analysis. In this article, displacement analysis of a composite arched structure is investigated based on the terrestrial laser scanning technique. A new method based on the measured point cloud is proposed to analyze the displacement of surficial points, resulting in not only the displacement size but also the displacement direction. The innovation lies in extracting the displacement information with a network and remapped point cloud, which is called the network method. The displacement map obtained demonstrates that the transverse displacement in the experiment plays an important role in the safety of the structure, which could not be observed and obtained by the surface approximation method. Therefore, the panorama- and pointwise displacement analysis technologies contribute to ensure the safety of increasingly complex constructions.


Spatium ◽  
2016 ◽  
pp. 30-36 ◽  
Author(s):  
Petar Pejic ◽  
Sonja Krasic

Digital three-dimensional models of the existing architectonic structures are created for the purpose of digitalization of the archive documents, presentation of buildings or an urban entity or for conducting various analyses and tests. Traditional methods for the creation of 3D models of the existing buildings assume manual measuring of their dimensions, using the photogrammetry method or laser scanning. Such approaches require considerable time spent in data acquisition or application of specific instruments and equipment. The goal of this paper is presentation of the procedure for the creation of 3D models of the existing structures using the globally available web resources and free software packages on standard PCs. This shortens the time of the production of a digital three-dimensional model of the structure considerably and excludes the physical presence at the location. In addition, precision of this method was tested and compared with the results acquired in a previous research.


Sign in / Sign up

Export Citation Format

Share Document