scholarly journals Creation of virtual 3D models of the existing architectonic structures using the web resources

Spatium ◽  
2016 ◽  
pp. 30-36 ◽  
Author(s):  
Petar Pejic ◽  
Sonja Krasic

Digital three-dimensional models of the existing architectonic structures are created for the purpose of digitalization of the archive documents, presentation of buildings or an urban entity or for conducting various analyses and tests. Traditional methods for the creation of 3D models of the existing buildings assume manual measuring of their dimensions, using the photogrammetry method or laser scanning. Such approaches require considerable time spent in data acquisition or application of specific instruments and equipment. The goal of this paper is presentation of the procedure for the creation of 3D models of the existing structures using the globally available web resources and free software packages on standard PCs. This shortens the time of the production of a digital three-dimensional model of the structure considerably and excludes the physical presence at the location. In addition, precision of this method was tested and compared with the results acquired in a previous research.

2018 ◽  
Vol 55 ◽  
pp. 00015
Author(s):  
Katarzyna Kądziołka ◽  
Damian Kasza ◽  
Wojciech J. Milczarek

The dynamic development of measurement technology based on the use of laser scanners allows for fast transfer of information, related to terrestrial data, to a virtual environment and enables the creation of three-dimensional models. Because of the growing demand for underground areas inventory, especially historic areas, the creation of 3D numerical models increases in popularity. It allows to increase the geotouristic potential of a particular area and to use solutions in support of the safety of tourists as well as the safety of area itself. The development of the terrestrial laser scanning technique is accompanied simultaneously by the development of means of digital data processing that was obtained in the form of point clouds. Those means use the commercial software as well as software available in the open source system. Both computing environments use algorithms enabling the processing of huge collections of points in automatized mode by using a number of open-access algorithms either freeware or dedicated. The methodology of numerical models development, described in this article, has been presented on the example of underground object “Rzeczka” (“Riese” Complex) located at the Sowie Range (SW Poland).


2021 ◽  
Vol 20 (7) ◽  
pp. 48-61
Author(s):  
Pavel V. Chistyakov ◽  
Ekaterina N. Bocharova ◽  
Ksenia A. Kolobova

This article provides a detailed account of the process of scanning, post-processing and further manipulation of three-dimensional models obtained with structured light scanners. Purpose. The purpose of the study is determined by the need for national archaeologists to learn the methods of three-dimensional modeling for the implementation of scientific research corresponding to international standards. Unfortunately, this direction in national archaeology began to develop in a relatively recent time and there is a lag in the application of three-dimensional modeling of national archaeology compared to the world level. Results. Any archaeological, experimental or ethnographic artifact can be used for three-dimensional scanning. To perform post-processing of three-dimensional models it is necessary to carry out primary scanning of an artifact by one of the existing algorithms. The algorithm for creating models, their positioning, simplification, saving in various formats and export is described. The main sequence of 3D models post-processing includes: processing of groups of scanned projections (their cleaning and alignment), creation of artifact model and processing/rectification of the resulting model using special software. Conclusion. As a result of correct implementation of the algorithm, the researcher receives a scaled model completely corresponding to the original artifact. Obtaining a scalable, texture-free three-dimensional model of the artifact, which fully corresponds to the original and exceeds a photograph in the quality of detail transfer, allows a scientist to conduct precise metric measurements and any procedures of non-invasive manipulation of the models. The ability to access a database of three-dimensional models of archaeological collections greatly simplifies the work of archaeologists, especially in situations when country borders are closed.


2020 ◽  
Vol 75 ◽  
pp. 04016 ◽  
Author(s):  
Ihor Hevko ◽  
Olha Potapchuk ◽  
Iryna Lutsyk ◽  
Viktorya Yavorska ◽  
Viktoriia Tkachuk

The authors present methods building and printing three-dimensional models for graphical reconstruction of historical architectural objects. Procedure sequence of the methods is exemplified through building the model of the Parochial Cathedral of St. Mary of the Perpetual Assistance of the 1950s. After analyzing and assessing the most popular specialized software means, the 3DS Max environment is chosen to build a three-dimensional model. Suggested software tools enable increased accuracy, speed and granularity of fixation of complex systems and expanded databases, providing efficient instruments to deal with bulk data and being relevant to new IT achievements. Sequence and content of operations for analytical and modeling cycles are substantiated. The cathedral model is built on the basis of archive photographs and drafts. The authors describe methods and the algorithm of procedures, principles of architectural and spacious modeling to recreate the architectural object. The three-dimensional model is built by applying a stereogram miniature of the destroyed Cathedral. Reconstruction of spacious configuration of the objects is based on parallax assessment of images. Stages of project implementation are determined. There are described methods of implementing modeling by 3DS Max tools and preparing the model for 3D printing in Cura.


Author(s):  
P. Delis ◽  
M. Wojtkowska ◽  
P. Nerc ◽  
I. Ewiak ◽  
A. Lada

Textured three dimensional models are currently the one of the standard methods of representing the results of photogrammetric works. A realistic 3D model combines the geometrical relations between the structure’s elements with realistic textures of each of its elements. Data used to create 3D models of structures can be derived from many different sources. The most commonly used tool for documentation purposes, is a digital camera and nowadays terrestrial laser scanning (TLS). Integration of data acquired from different sources allows modelling and visualization of 3D models historical structures. Additional aspect of data integration is possibility of complementing of missing points for example in point clouds. The paper shows the possibility of integrating data from terrestrial laser scanning with digital imagery and an analysis of the accuracy of the presented methods. The paper describes results obtained from raw data consisting of a point cloud measured using terrestrial laser scanning acquired from a Leica ScanStation2 and digital imagery taken using a Kodak DCS Pro 14N camera. The studied structure is the ruins of the Ilza castle in Poland.


2018 ◽  
Vol 9 ◽  
pp. 74
Author(s):  
Adhitya Latief ◽  
Pradono Suhardi ◽  
Cholid Badri

Objective: The objective of this study is to compare fabrication of commonly used three-dimensional (3D) models with original multislice computed tomography (MSCT) scan data for accuracy and precision in reconstruction surgery.Methods: MSCT data from 10 samples are processed and manufactured to be 3D models. Both groups are then measured and analyzed for the purpose of comparison.Results: The average mandibular measurement difference between 3D models and MSCT scans is 0.26 mm more <2%. The final results of the comparison reveal high accuracy in 3D models compared to MSCT scan data.Conclusion: The 3D model could be considered as surgical guidance for maxillofacial reconstruction surgery since it yields highly accurate results.


Author(s):  
Anna Khomiak ◽  
◽  
Sibilla Omelchuk ◽  
Natalia Neizvestna ◽  
Anna Feshchenko ◽  
...  

An Airborne laser scanning allowed to get the cloud of points with clearly defined spatial coordinates. If that cloud is classified, the various models could be created based on received information. Nowadays, 3D models of buildings are used in a variety of industries for analysis and different processes development forecasting, connected with buildings. It explains why the methods of creating 3D models should be researched and algorithms of its developing should be created. The Airborne laser scanning is researched in the paper, analysis of data (the cloud of points) processing is done in programs that allowed to create information system.


2020 ◽  
Vol 4 (1) ◽  
pp. 113-122
Author(s):  
Maxim A. Altyntsev ◽  
Pavel A. Karpik

Three-dimensional metric models of real physical objects are actively used when solving various tasks in the process of a person's professional activity. In the construction industry, 3D modeling helps to capture all life cycles of buildings from engineering surveys to design, operation and demolition work. Three-dimensional models allow quickly performing all the necessary measurements in a computer environment, provide the ability to build two-dimensional drawings and make changes to design documentation. Among all types of three-dimensional models, there are separately those that allow storing various attributive information about an object in addition to geometric information, significantly automate the process of many engineering calculations using a three-dimensional model and provide the ability to automatically create various types of documentation. These types of three-dimensional models are called building information models (BIM). The most appropriate method is laser scanning as a data source for creating BIM. The technique of three-dimensional modeling based on laser scanning data is discussed. The advantages of BIM over simple three-dimensional models created in specialized software for processing laser scanning data and computer-aided design systems are analyzed.


2020 ◽  
Vol 6 (1) ◽  
pp. 161-166
Author(s):  
Egor V. Kazharin

All architectural structures are a subject to periodic surveys and use of photogrammetric methods for these purposes will ensure a reduction in time required to complete the work, required accuracy, as well as ability to fulfill the required measurements on a pair of images in office conditions without additional field visits, which will significantly reduce the cost of implementation of this type of work. In order to solve the problems of building three-dimensional models of such objects, a ground-based photography is used more often. This method of photographing, in comparison with other methods, such as ground-based laser scanning, facade shooting with the help of electronic total stations, seems more affordable, since it does not require the use of expensive equipment, but it makes it possible to build an object model with the specified accuracy. For ground photography it is enough to have a calibrated digital camera, computer and software. The purpose of this work is to study the method of constructing a three-dimensional model of an architectural structure based on photogrammetric processing of images, as well as optimizing the result and demonstrating the operability of the method.


2021 ◽  
Vol 263 ◽  
pp. 05014
Author(s):  
Svetlana Maksimova ◽  
Anastasia Semina ◽  
Anna Shamarina ◽  
Anna Balandina

The possibilities and role of a three-dimensional spatial model are considered on the example of the historical and architectural Usolye Stroganovsky museum-reserve strategic master plan (Perm region). In the context of heritage preservation, the master plan was shown not only as a strategic document, but also as a communication tool between various branches of government in order to integrate heritage protection policy into the system of general urban planning policy. The methodological approach is based on use of a digital three-dimensional model obtained by laser scanning and photogrammetry. A portable and ground-based laser scanning to create the point cloud is presented. The architectural and urban planning solutions of the strategic master plan are based on the dynamic 3D model and static visualizations of individual elements. The results of virtual reconstruction are shown. The level of detail of 3D models is LOD 200. Virtual reconstruction and visualization have shown themselves not only as a reliable communication tool for the decision-making management, but also as a way to quickly obtain a complex of urban planning and design documentation suitable for reconstruction and restoration of historical and architectural heritage.


Author(s):  
P. Delis ◽  
M. Wojtkowska ◽  
P. Nerc ◽  
I. Ewiak ◽  
A. Lada

Textured three dimensional models are currently the one of the standard methods of representing the results of photogrammetric works. A realistic 3D model combines the geometrical relations between the structure’s elements with realistic textures of each of its elements. Data used to create 3D models of structures can be derived from many different sources. The most commonly used tool for documentation purposes, is a digital camera and nowadays terrestrial laser scanning (TLS). Integration of data acquired from different sources allows modelling and visualization of 3D models historical structures. Additional aspect of data integration is possibility of complementing of missing points for example in point clouds. The paper shows the possibility of integrating data from terrestrial laser scanning with digital imagery and an analysis of the accuracy of the presented methods. The paper describes results obtained from raw data consisting of a point cloud measured using terrestrial laser scanning acquired from a Leica ScanStation2 and digital imagery taken using a Kodak DCS Pro 14N camera. The studied structure is the ruins of the Ilza castle in Poland.


Sign in / Sign up

Export Citation Format

Share Document