scholarly journals Proof vs Truth in Mathematics

Studia Humana ◽  
2020 ◽  
Vol 9 (3-4) ◽  
pp. 10-18
Author(s):  
Roman Murawski

AbstractTwo crucial concepts of the methodology and philosophy of mathematics are considered: proof and truth. We distinguish between informal proofs constructed by mathematicians in their research practice and formal proofs as defined in the foundations of mathematics (in metamathematics). Their role, features and interconnections are discussed. They are confronted with the concept of truth in mathematics. Relations between proofs and truth are analysed.

Paul Benacerraf and Hilary Putnam. Introduction. Philosophy of mathematics, Selected readings, edited by Paul Benacerraf and Hilary Putnam, Prentice-Hall, Inc., Engle-wood Cliffs, New Jersey, 1964, pp. 1–27. - Rudolf Carnap. The logicist foundations of mathematics. English translation of 3528 by Erna Putnam and Gerald E. Massey. Philosophy of mathematics, Selected readings, edited by Paul Benacerraf and Hilary Putnam, Prentice-Hall, Inc., Engle-wood Cliffs, New Jersey, pp. 31–41. - Arend Heyting. The intuitionist foundations of mathematics. English translation of 3856 by Erna Putnam and Gerald E. Massey. Philosophy of mathematics, Selected readings, edited by Paul Benacerraf and Hilary Putnam, Prentice-Hall, Inc., Engle-wood Cliffs, New Jersey, pp. 42–49. - Johann von Neumann. The formalist foundations of mathematics. English translation of 2998 by Erna Putnam and Gerald E. Massey. Philosophy of mathematics, Selected readings, edited by Paul Benacerraf and Hilary Putnam, Prentice-Hall, Inc., Engle-wood Cliffs, New Jersey, pp. 50–54. - Arend Heyting. Disputation. A reprint of pages 1-12 (the first chapter) and parts of the bibliography of XXI 367. Philosophy of mathematics, Selected readings, edited by Paul Benacerraf and Hilary Putnam, Prentice-Hall, Inc., Engle-wood Cliffs, New Jersey, pp. 55–65. - L. E. J. Brouwer. Intuitionism and formalism. A reprint of 1557. Philosophy of mathematics, Selected readings, edited by Paul Benacerraf and Hilary Putnam, Prentice-Hall, Inc., Engle-wood Cliffs, New Jersey, pp. 66–77. - L. E. J. Brouwer. Consciousness, philosophy, and mathematics. A reprint of pages 1243-1249 of XIV 132. Philosophy of mathematics, Selected readings, edited by Paul Benacerraf and Hilary Putnam, Prentice-Hall, Inc., Engle-wood Cliffs, New Jersey, pp. 78–84. - Gottlob Frege. The concept of number. English translation of pages 67-104, 115-119, of 495 (1884 edn.) by Michael S. Mahoney. Philosophy of mathematics, Selected readings, edited by Paul Benacerraf and Hilary Putnam, Prentice-Hall, Inc., Engle-wood Cliffs, New Jersey, pp. 85–112. - Bertrand Russell. Selections from Introduction to mathematical philosophy. A reprint of pages 1-19, 194-206, of 11126 (1st edn., 1919). Philosophy of mathematics, Selected readings, edited by Paul Benacerraf and Hilary Putnam, Prentice-Hall, Inc., Engle-wood Cliffs, New Jersey, pp. 113–133. - David Hilbert. On the infinite. English translation of 10813 by Erna Putnam and Gerald E. Massey. Philosophy of mathematics, Selected readings, edited by Paul Benacerraf and Hilary Putnam, Prentice-Hall, Inc., Engle-wood Cliffs, New Jersey, pp. 134–151.

1969 ◽  
Vol 34 (1) ◽  
pp. 107-110
Author(s):  
Alec Fisher

1998 ◽  
Vol 11 (2) ◽  
pp. 291-325 ◽  
Author(s):  
J. Posy Carl

The ArgumentL. E. J. Brouwer and David Hubert, two titans of twentieth-century mathematics, clashed dramatically in the 1920s. Though they were both Kantian constructivists, their notorious Grundlagenstreit centered on sharp differences about the foundations of mathematics: Brouwer was prepared to revise the content and methods of mathematics (his “Intuitionism” did just that radically), while Hilbert's Program was designed to preserve and constructively secure all of classical mathematics.Hilbert's interests and polemics at the time led to at least three misconstruals of intuitionism, misconstruals which last to our own time: Current literature often portrays popular views of intuitionism as the product of Brouwer's idiosyncratic subjectivism; modern logicians view intuitionism as simply applying a non-standard formal logic to mathematics; and contemporary philosophers see that logic as based upon a pure assertabilist theory of meaning. These pictures stem from the way Hilbert structured the controversy.Even though Brouwer's own work and behavior occasionally reinforce these pictures, they are nevertheless inaccurate accounts of his approach to mathematics. However, the framework provided by the Brouwer-Hilbert debate itself does not supply an adequate correction of these inaccuracies. For, even if we eliminate these mistakes within that framework, Brouwer's position would still appear fragmented and internally inconsistent. I propose a Kantian framework — not from Kant's philosophy of mathematics but from his general metaphysics — which does show the coherence and consistency of Brouwer's views. I also suggest that expanding the context of the controversy in this way will illuminate Hilbert's views as well and will even shed light upon Kant's philosophy.


1990 ◽  
Vol 28 ◽  
pp. 79-99 ◽  
Author(s):  
Crispin Wright

To be asked to provide a short paper on Wittgenstein's views on mathematical proof is to be given a tall order (especially if little or no familiarity either with mathematics or with Wittgenstein's philosophy is to be presupposed!). Close to one half of Wittgenstein's writings after 1929 concerned mathematics, and the roots of his discussions, which contain a bewildering variety of underdeveloped and sometimes conflicting suggestions, go deep to some of the most basic and difficult ideas in his later philosophy. So my aims in what follows are forced to be modest. I shall sketch an intuitively attractive philosophy of mathematics and illustrate Wittgenstein's opposition to it. I shall explain why, contrary to what is often supposed, that opposition cannot be fully satisfactorily explained by tracing it back to the discussions of following a rule in the Philosophical Investigations and Remarks on the Foundations of Mathematics. Finally, I shall try to indicate very briefly something of the real motivation for Wittgenstein's more strikingly deflationary suggestions about mathematical proof, and canvass a reason why it may not in the end be possible to uphold them.


2020 ◽  
Vol 57 (4) ◽  
pp. 74-86
Author(s):  
Vitaly V. Tselishchev ◽  

The article is devoted to the comparison of two types of proofs in mathematical practice, the methodological differences of which go back to the difference in the understanding of the nature of mathematics by Descartes and Leibniz. In modern philosophy of mathematics, we talk about conceptual and formal proofs in connection with the so-called Hilbert Thesis, according to which every proof can be transformed into a logical conclusion in a suitable formal system. The analysis of the arguments of the proponents and opponents of the Thesis, “conceptualists” and “formalists”, is presented respectively by the two main antagonists – Y. Rav and J. Azzouni. The focus is on the possibility of reproducing the proof of “interesting” mathematical theorems in the form of a strict logical conclusion, in principle feasible by a mechanical procedure. The argument of conceptualists is based on pointing out the importance of other aspects of the proof besides the logical conclusion, namely, in introducing new concepts, methods, and establishing connections between different sections of meaningful mathematics, which is often illustrated by the case of proving Fermat’s Last Theorem (Y. Rav). Formalists say that a conceptual proof “points” to the formal logical structure of the proof (J. Azzouni). The article shows that the disagreement is based on the assumption of asymmetry of mutual translation of syntactic and semantic structures of the language, as a result of which the formal proof loses important semantic factors of proof. In favor of a formal proof, the program of univalent foundations of mathematics In. Vojevodski, according to which the future of mathematical proofs is associated with the availability of computer verification programs. In favor of conceptual proofs, it is stated (A. Pelc) that the number of steps in the supposed formal logical conclusion when proving an “interesting” theorem exceeds the cognitive abilities of a person. The latter circumstance leads the controversy beyond the actual topic of mathematical proof into the epistemological sphere of discussions of “mentalists” and “mechanists” on the question of the supposed superiority of human intelligence over the machine, initiated by R. Penrose in his interpretation of the Second Theorem of Goedel, among whose supporters, as it turned out, was Goedel himself.


2015 ◽  
Vol 23 (1) ◽  
pp. 125-138
Author(s):  
Rafal Urbaniak

Near the end of the nineteenth century, a part of mathematical research was focused on unification: the goal was to find ‘one sort of thing’ that mathematics is (or could be taken to be) about. Quite quickly sets became the main candidate for this position. While the enterprise hit a rough patch with Frege’s failure and set-theoretic paradoxes, by the 1920s mathematicians (roughly speaking) settled on a promising axiomatization of set theory and considered it foundational. In parallel to this development was the work of Stanislaw Leśniewski (1886–1939), a Polish logician who did not accept the existence of abstract (aspatial, atemporal and acausal) objects such as sets. Leśniewski attempted to find a nominalistically acceptable replacement for set theory in the foundations of mathematics. His candidate was Mereology – a theory which, instead of sets and elements, spoke of wholes and parts. The goal of this paper will be to present Mereology in this context, to evaluate the feasibility of Leśniewski’s project and to briefly comment on its contemporary relevance.


Philosophy ◽  
1956 ◽  
Vol 31 (119) ◽  
pp. 358-361
Author(s):  
F. H. Heinemann

Operative Logic and Mathematics would appear to be a new venture. Only a few weeks before his premature death Hermann Weyl, one of the most original mathematicians of our time, the author of a Philosophy of Mathematics and Natural Science and also of a stimulating book on Symmetry, drew my attention to Paul Lorenzen's Einführung in die operative Logik und Mathematik(Springer, Berlin). This book had given him new hope, since GÖdel had discouraged his endeavour to find the foundations of mathematics. “Perhaps,” he added, “Lorenzen's approach promises a way of arriving at reliable foundations.”


Author(s):  
Antonio Caba

RESUMENDesde hace al menos dos décadas ha surgido un renovado interés en la filosofía de las matemáticas de Frege, gracias a trabajos de Boolos, Dummet, Wright y otros. En este artículo me centraré en "Die Grundlagen der Arithmetik", un libro completamente escrito en lenguaje natural. La tarea consistirá en proporcionar una simbolización informarl de los principales conceptos que Frege introduce.PALABRAS CLAVEFREGE-GRUNDLAGEN-FUNDAMENTOS DE LA MATEMÁTICAABSTRACTFor at least two decades has been flourished a renewed interest in Frege´s philosophy of mathematics, thanks to the work of Boolos, Dummet, Wright, and others. In this paper I´ll focus on "Die Grundlagen der Arithmetik", a book completely written in natural language. Tha task will be to provide an informal simbolization of the main issues introduced by Frege.KEYWORDSFREGE-GRUNDLAGEN-FOUNDATIONS OF MATHEMATICS


Author(s):  
Juliet Floyd

Ludwig Wittgenstein (1889–1951) wrote as much on the philosophy of mathematics and logic as he did on any other topic, leaving at his death thousands of pages of manuscripts, typescripts, notebooks, and correspondence containing remarks on (among others) Brouwer, Cantor, Dedekind, Frege, Hilbert, Poincaré, Skolem, Ramsey, Russell, Gödel, and Turing. He published in his lifetime only a short review (1913) and the Tractatus Logico-Philosophicus (1921), a work whose impact on subsequent analytic philosophy's preoccupation with characterizing the nature of logic was formative. Wittgenstein's reactions to the empiricistic reception of his early work in the Vienna Circle and in work of Russell and Ramsey led to further efforts to clarify and adapt his perspective, stimulated in significant part by developments in the foundations of mathematics of the 1920s and 1930s; these never issued in a second work, though he drafted and redrafted writings more or less continuously for the rest of his life.


Sign in / Sign up

Export Citation Format

Share Document