scholarly journals Sensitive and selective spectrophotometric assay of doxycycline hyclate in pharmaceuticals using Folin-Ciocalteu reagent

2010 ◽  
Vol 60 (4) ◽  
pp. 445-454 ◽  
Author(s):  
Pavagada Ramesh ◽  
Kanakapura Basavaiah ◽  
Nagaraju Rajendraprasad

Sensitive and selective spectrophotometric assay of doxycycline hyclate in pharmaceuticals using Folin-Ciocalteu reagentA spectrophotometric method for the determination of doxycycline (DOX) is described. The method is based on the formation of blue colored chromogen due to reduction of tungstate and/or molybdate in Folin-Ciocalteu (F-C) reagent by DOX in alkaline medium. The colored species has an absorption maximum at 770 nm and the system obeys Beer's law over the concentration range 0.75-12.0 μg mL-1DOX. The apparent molar absorptivity is 2.78 × 104L mol-1cm-1. The limit of quantification and detection values are reported to be 0.20 and 0.08 μg mL-1, respectively. Over the linear range applicable, the accuracy and precision of the method were evaluated on intra-day and inter-day basis. The reported mean accuracy value was 101.0 ± 1.7 %, the relative error was ≤ 2.7 % and the relative standard deviation was ≤ 2.5 %. Application of the proposed method to bulk powder and commercial pharmaceutical tablets is also presented. No significant difference was obtained between the results of the proposed method and the official BP method. The procedure described in this paper is simple, rapid, accurate and precise.

INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (03) ◽  
pp. 44-51
Author(s):  
B. Sabbagh ◽  
B. V. S. Lokesh ◽  
G. A. Akouwah ◽  

Two methods were developed for the determination of dapagliflozin (DAPA) in pure form and in tablets. The procedure utilized was UV-Visible Spectroscopy and RP-HPLC with PDA detector to quantify DAPA in bulk and tablets. The sensitive linear range was identified for both methods within 0.5-5.0μg/mL. The linear regression analysis was identified for both methods with correlation coefficient(r)>0.99. The LOD and LOQ values were found to be 0.05 μg/mL and 0.5 μg/mL for the method by UV-Spectroscopy. The molar absorptivity (ε) was calculated as 1.27 X 105 L.mol-1cm-1. The RP-HPLC method produced LOD and LOQ values of 1.0 ng/mL and 0.5 μg/mL. Both methods were simple, precise, reproducible to quantify the amount of unknown in bulk as well as in tablets and estimated accurately within the range of 100.0±0.5%. Statistical analysis was performed on the data obtained. There was no significant difference between the developed and reported methods with p>0.05. Both methods can be applied for routine analysis of DAPA in bulk and tablets with good accuracy and precision.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Ibrahim A. Darwish ◽  
Heba H. Abdine ◽  
Sawsan M. Amer ◽  
Lama I. Al-Rayes

Simple and rapid spectrophotometric method has been developed and validated for the determination of paroxetine (PRX) in tablets. The proposed method was based on nucleophilic substitution reaction of PRX with 1,2-naphthoquinone-4-sulphonate (NQS) in an alkaline medium to form an orange-colored product of maximum absorption peak () at 488 nm. The stoichiometry and kinetics of the reaction were studied, and the reaction mechanism was postulated. Under the optimized reaction conditions, Beer's law correlating the absorbance (A) with PRX concentration (C) was obeyed in the range of 1–8 g . The regression equation for the calibration data was: A = 0.0031 + 0.1609 C, with good correlation coefficients (0.9992). The molar absorptivity () was L  1 . The limits of detection and quantitation were 0.3 and 0.8 g , respectively. The precision of the method was satisfactory; the values of relative standard deviations did not exceed 2%. The proposed method was successfully applied to the determination of PRX in its pharmaceutical tablets with good accuracy and precisions; the label claim percentage was %. The results obtained by the proposed method were comparable with those obtained by the official method.


2021 ◽  
Vol 12 (2) ◽  
pp. 168-178
Author(s):  
Mohamed Rizk ◽  
Ali Kamal Attia ◽  
Heba Yosry Mohamed ◽  
Mona Elshahed

A sensitive, accurate, and precise liquid chromatographic method has been developed and validated for the determination of Linagliptin (LNG) and Empagliflozin (EMP) in their combined tablets. Chromatographic separation was carried out on ODS-3 Inertsil® C18 column (150×4.6 mm, 5 µm). The mobile phase A (consisting of 0.30% Triethyl amine buffer (TEA) at pH = 4.5, adjusted using ortho-phosphoric acid); the mobile phase B (consisting of acetonitrile) was pumped through the column whose temperature was maintained at 40 °C, with a flow rate 1.7 mL/min, using gradient elution from 0-3 min A:B (75:25, v:v), then from 3-6 min the ratio changed to be A:B (60:40, v:v). Fluorescence detection (FLD) was performed at 410 nm after excitation at 239 nm. Acceptable linearity, accuracy and precision values of the proposed method were found over the concentration ranges of 0.5-15 µg/mL for LNG and 1.0-30 µg/mL for EMP with correlation coefficients of 0.9997 and 0.9998 in the case of LNG and EMP, respectively. The recoveries and relative standard deviations percentages were found in the following ranges: 98.56-101.85 and 0.53-1.52% for LNG and 98.00-101.95 and 0.31-1.05% for EMP. The detection and quantification limits were 0.15 and 0.45 µg/mL for LNG and 0.22 and 0.67 µg/mL for EMP. The optimized method was validated and proved to be specific, robust, accurate and reliable for the determination of the drugs in pure form or in their combined pharmaceutical preparations. No significant difference was found regarding accuracy and precision upon statistical comparison between the obtained results of the proposed method and those of the reported method. Furthermore, the proposed method is proved to be a stability-indicating assay after exposure of the studied drugs to variable forced degradation parameters, such as acidic, alkaline and oxidative conditions, according to the recommendations of the International Conference on Harmonization guidelines. The simplicity and selectivity of the proposed method allows its use in quality control laboratories.


2020 ◽  
Vol 32 (6) ◽  
pp. 1314-1320
Author(s):  
Lamya A. Sarsam ◽  
Salim A. Mohammed ◽  
Sahar A. Fathe

A rapid, simple and sensitive spectrophotometric and RP-HPLC methods have been developed for the quantitative determination of cefotaxime-Na in both pure and dosage forms. The spectrophotometric method was based on diazotization of cefotaxime-Na and then coupling with 8-hydroxyquinoline in an alkaline medium. The resulting azo dye exhibited maximum absorption at 551 nm with a molar absorptivity of 0.597 × 104 L mol-1 cm-1. Beer′s law was obeyed over the range 10-700 μg/25 mL (i.e. 0.4-28.0 ppm) with an excellent determination coefficient (R2 = 0.9993). The limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.0194 and 0.3765 μg mL-1, respectively. The recoveries were obtained in the range 97.3-102.5% and the relative standard deviation (RSD) was better than ± 1.56. The HPLC method has been developed for the determination of cefotaxime-Na. The analysis were carried out on a C18 column and a mobile phase composed of acetonitrile and phosphate buffer solution (0.024M KH2PO4 and 0.01M H3PO4) at pH 3.5 in the ratio of 60:40 (v:v), with a flow rate of 1.0 mL min-1 and UV detection at 258 nm. The proposed method showed good linearity (in a range of concentration 1.0-200 μg mL-1. The recovery percent and a relative standard deviations were found in the range 96 to 104.8% and ± 0.017 to ± 0.031%, respectively. Both methods were applied successfully to the assay of cefotaxime-Na in commercial injection preparations.


2010 ◽  
Vol 7 (2) ◽  
pp. 395-402
Author(s):  
Padmarajaiah Nagaraja ◽  
Ashwinee Kumar Shrestha

A spectrophotometric method has been proposed for the determination of four phenolic drugs; salbutamol, ritodrine, amoxicillin and isoxsuprine. The method is based on the oxidation of 2, 4- dinitrophenyl-hydrazine and coupling of the oxidized product with drugs to give intensely colored chromogen. Under the proposed optimum condition, beer’s law was obeyed in the concentration range of 2.5-17, 2-29, 4-33 and 5-30 μg/mL for salbutamol, ritodrine, amoxicillin and isoxsuprine respectively. The limit of detection (LOD) and limit of quantification (LOQ) were 0.2, 0.83, 0.09, 0.84 μg/mL and 0.66, 2.79, 0.3 and 2.81 μg/mL in the same order. No interference was observed from common pharmaceutical adjuvants. The ringbom plots and low relative standard deviation assert the applicability of this method. The suggested method was further applied for the determinations of drugs in commercial pharmaceutical dosage forms, which was compared statistically with reference methods by means oft- test andF- test and were found not to differ significantly at 95% confidence level. The procedure is characterized by its simplicity with accuracy and precision.


2011 ◽  
Vol 17 (3) ◽  
pp. 259-267 ◽  
Author(s):  
Nagaraju Rajendraprasad ◽  
Kanakapura Basavaiahf ◽  
Basavaiah Vinay

Quetiapine fumarate (QTF) is an antipsychotic drug belonging to the benzisoxazole derivatives indicated for the treatment of schizophrenia. A sensitive and selective method based on dichloromethane-extractable ion-pair of QTF with calmagite (CGT), which exhibited an absorption maximum at 490 nm, is described. At this wavelength, Beer?s law is obeyed over the concentration range of 3.0 - 30.0 ?g ml-1. The apparent molar absorptivity, limit of detection (LOD) and quantitation (LOQ) values are 1.32 ? 104 l mol-1 cm-1, 0.27 and 0.81 ?g ml-1 respectively. The reaction is extremely rapid at room temperature and the absorbance values remain unchanged upto 19 h. The precision results, expressed as intra-day and inter-day relative standard deviation values, are satisfactory (RSD ? 2.2%). The accuracy is satisfactory as well (RE ? 2.44%). The method was successfully applied to the determination of QTF in pharmaceuticals and spiked human urine with satisfactory results. No interference was observed from common pharmaceutical adjuvants in tablets. Statistical comparison of the results with official method showed an excellent agreement and indicated no significant difference in precision.


2016 ◽  
Vol 11 (2) ◽  
pp. 3540-3551
Author(s):  
Taghreed A. Mohammed ◽  
Mona A. Mohamed

A selective and new spectrophotometric method is described for determination of three antiepileptic drugs; namely lamotrigine (LAM), gabapentin (GAB), and oxcarbazepine (OXC) in drug substances and in drug products using vanillin reagent as the chromogenic agent. The method is based on a coupling reaction between the cited drugs and vanillin reagent in acidic condition. Under optimized conditions, the yellow colored products were measured at 405, 396, and 400 nm respectively. Beer’s law was obeyed at (0.4 – 10), (0.1-10), and (0.5-11) μg/mL, and  the calculated molar absorptivity values are 2.52 x 104, 1.74 x 104, and 2.54 x 104 L/mol/cm for LAM, GAB, and OXC respectively. Sandell sensitivity, the limit of detection (LOD) and limit of quantification (LOQ) were calculated. No interference was observed from common additives found in drug products. The presented method was validated according to ICH guidelines. Statistical comparison of the results was performed using Student's t-test and F-ratio at 95% confidence level, and there was no significant difference between the reference and proposed method with regard to accuracy and precision. The method offers the advantages of rapidity, simplicity and sensitivity and low cost and can be easily applied to resource poor settings without the need for expensive instrumentation and reagents.


2016 ◽  
Vol 2 (1) ◽  
pp. 28 ◽  
Author(s):  
Zeeshan Masood ◽  
Muhammad Tayyab Ansari ◽  
Sharjeel Adnan ◽  
Muhammad Asad ◽  
Muhammad Farooq ◽  
...  

A rapid, simple and sensitive spectrophotometric method has been developed for the determination of metronidazole in pharmaceutical pure and dosage forms. The method depends on alkaline hydrolysis of metronidazole releases the nitro group as nitrite ion and yielded nitrite ions can be used to give a colored complex that absorbs maximally at 505 nm. Beer’s law is obeyed in the concentration ranges 9-100 mg/ml with molar absorptivity of 1.14 ×103 L mole-1 cm-1. The proposed method is precise, accurate and specific for the quantitative determination of drug in bulk and dosage forms. The results of analysis of commercial formulations and the recovery study of metronidazole suggested that there is no interference from any excipients, which are present in pharmaceutical formulations of metronidazole. Statistical comparison of the results was performed with regard to accuracy and precision using student’s t-test and F-ratio at 95% confidence level. There is no significant difference between the reported and proposed methods with regard to accuracy and precision.


2020 ◽  
Vol 11 (4) ◽  
pp. 291-297
Author(s):  
Hutaf Mustafa Baker ◽  
Hussam Ahmad Alsaoud ◽  
Hamzeh Mohamad Abdel-Halim

A simple, sensitive and reproducible method for the determination of ranitidine hydrochloride in pharmaceutical preparations was investigated. This spectrophotometric method was based on the formation of a deep red color product with ninhydrin in basic media and the absorbance measured at λmax = 480 nm. The reaction occurs at 45 °C with pH = 10 having a contact time of 38 minutes. Under the optimum conditions, Beer’s Law is obeyed in the concentration range of 8.98×103 - 9.90×104 µg/L. The coefficient of correlation was found to be 0.999 for the obtained method with molar absorptivity of 3.05×103 L/mol.cm. The calculated Sandell’s sensitivity is 0.108 μg/cm2. The limit of detection and limit of quantification are 0.0997 and 0.3023 µg/mL, respectively. The low values of the percentage relative standard deviation and percentage relative error indicate the high precision and the good accuracy of the proposed method. The stoichiometry of the reaction is determined and found to be 1:4 (Ranitidine hydrochloride:Ninhydrin). The initial rate method confirmed that this reaction is first order one.


2018 ◽  
Vol 15 (2) ◽  
pp. 6186-6198
Author(s):  
Abdul Aziz Ramadan ◽  
Souad Zeino

A simple, direct and accurate spectrophotometric method has been developed for the determination of Glimepiride (GLM) in pure and pharmaceutical formulations by complex formation with bromocresol purple (BCP). The method involves the formation of a yellow ion-pair complex between BCP with glimepiride at pH<3,8; after reacting GLM with Na2CO3 to give C24H33N4H+O5NaS which is extracted by chloroform. The formed complex [GLM]:[ BCP] was measured at lmax 418 nm against the reagent blank prepared in the same manner. Variables were studied in order to optimize the reaction conditions. Molar absorptivity (e) for complex was  20600  L.mol-1.cm-1. Beer’s law was obeyed in the concentration range of  1.226 – 46.608   mg.mL-1 in present of 5.0x10-4 mol/l of BCP with good correlation coefficient (R2= 0.9997). The relative standard deviation did not exceed 3.6%. The limit of detection (LOD) and the limit of quantification (LOQ) were 0.15 and 0.46 mg.mL-1, respectively. The proposed method was validated for specificity, linearity, precision and accuracy, repeatability, sensitivity (LOD and LOQ)  and robustness. The developed method is applicable for the determination of GLM in  pure and different dosage forms with average assay of 98.8 to 102.0% and the results are in good agreement with those obtained by the  RP-HPLC reference method.  


Sign in / Sign up

Export Citation Format

Share Document