scholarly journals Development and evaluation of in situ novel intragastric controlled-release formulation of hydrochlorothiazide

2011 ◽  
Vol 61 (1) ◽  
pp. 73-82 ◽  
Author(s):  
Ravikumar Patel ◽  
Jayvadan Patel

Development and evaluation of in situ novel intragastric controlled-release formulation of hydrochlorothiazide In situ forming intragastric controlled-release formulation is a new technology in the field of oral controlled-release delivery systems. The objective of this study was to develop formulations that can control drug release up to 24 hours. In addition, a combination of appropriate polymers and solvents was selected that could form a drug loaded gel at the process temperature of 60-70 °C, which gel could turn into a rigid mass upon exposure to dissolution fluid at body temperature. The drug release mechanism from this rigid mass was controlled by different formulation factors such as different polymer grades, polymer concentrations, hydrophobicity or hydrophilicity of solvents, different drug loadings, and physicochemical properties of additional excipients. After evaluating different formulation factors, Ethocel 10 FP and triethyl citrate were selected for further studies using hydrochlorothiazide as a model drug. Polynomial correlation between viscosity of the blank gel and drug release profile was also obtained.

Author(s):  
Nilam Patel ◽  
Rupal Jani

Hot-melt coating process (HMCP) is being developed to formulate lipid based oral controlled release formulation system for anti-epileptic drug Oxcarbazepine. Pellets containing Active ingredient in the core portion were prepared by extrusion spheronization process with use of appropriate filler and binder. These core pellets were then coated using hot-melt coating technology with different levels of solid lipid material and a hydrophilic component. Formulation and Process parameters were optimized to achieve targeted drug release profile and other target product profile with particular focus on HMCP. Quality by design (QbD) with DOE approach was used for designing and development of the formulation, by putting risk assessment (FMEA, Fish-bone diagram), screening (by Plackett Burman), and optimization (by CCC) studies. Appropriate ‘design space’ was proposed based on the optimization studies. The results demonstrated that the level of Low melting coating component and a hydrophilic component influenced the drug release rate from the formulation, and the rate of release could be optimized by varying the amount of these components in the formulation. Processing parameters like Temperature of the coating solution and atomization air, Atomization air pressure and Spray rate also affects the drug release rate and other parameters like coating efficiency and mean particle size. For optimized formulation, dissolution data model fitting was also carried out which adequately fits to Higuchi model suggesting that the drug release occurred predominantly by diffusion.


Author(s):  
Rajesh Dubey ◽  
Udaya K. Chowdary ◽  
Venkateswarlu V.

A controlled release formulation of metoclopramide was developed using a combination of hypromellose (HPMC) and hydrogenated castor oil (HCO). Developed formulations released the drug over 20 hr with release kinetics following Higuchi model. Compared to HCO, HPMC showed significantly higher influence in controlling the drug release at initial as well as later phase. The difference in the influence can be explained by the different swelling and erosion behaviour of the polymers. Effect of the polymers on release was optimized using a face-centered central composite design to generate a predictable design space. Statistical analysis of the drug release at various levels indicated a linear effect of the polymers’ levels on the drug release. The release profile of formulations containing the polymer levels at extremes of their ranges in design space was found to be similar to the predicted release profile


Author(s):  
Nilam Patel ◽  
Rupal Jani

Conventional coating processes are based on aqueous or organic solvent system, resulting in the lengthy and tedious processes where use and removal of solvents consumes lots of energy and resources. Also, solvent disposal is a critical issue considering environmental hazard.Hot melt coating process avoids use of solvent and is short and energy-efficient process. Here, Hot-melt coating process (HMCP) is being developed to formulate lipid based oral controlled release formulation system to deliver highly water soluble Biopharmaceutical Classification System (BCS) class-I drug Levetiracetam. Pellets containing Active ingredient in the core portion were prepared by extrusion spheronization process with use of appropriate filler and binder. These core pellets were then coated using hot-melt coating technology with different levels of lipid and a hydrophilic component. Formulation and Process parameters were optimized to achieve targeted drug release profile and other target product profile with particular focus onHMCP. Quality by design (QbD) with DOE approach was used for designing and development of the formulation, by putting risk assessment Failure Mode and Effect analysis (FMEA, Fish-bone diagram), screening (by Plackett Burman), and optimization by Central Composite Design (CCC) studies. Appropriate ‘design space’ was proposed based on the optimization studies. The results demonstrated that the level of Low melting coating component and a hydrophilic component influenced the drug release rate from the formulation, and the rate of release could be optimized by varying the amount of these components in the formulation. Processing parameters like Temperature of the coating solution and atomization air, Atomization air pressure and Spray rate also affects the drug release rate and other parameters like coating efficiency and mean particle size. For optimized formulation, dissolution data model fitting was also carried out which adequately fits to Higuchi model suggesting that the drug release occurred predominantly by diffusion.


RSC Advances ◽  
2015 ◽  
Vol 5 (17) ◽  
pp. 12956-12973 ◽  
Author(s):  
Durai Ramyadevi ◽  
Kalpoondi Sekar Rajan

Antiviral drug loaded nanoparticles is incorporated intoin situgel for controlled release therapy. Chemical and physical interactions of drug and polymers in the system influenced their characteristics and drug release mechanism.


MRS Advances ◽  
2016 ◽  
Vol 1 (29) ◽  
pp. 2107-2113 ◽  
Author(s):  
Anindita Laha ◽  
Saptarshi Majumdar ◽  
Chandra S Sharma

ABSTRACTThe major aim of the present study is to develop and explore the potential of large surface area electrospun polymer nanofabric as a carrier for controlled and sustained release, in particular for hydrophobic drugs. Gelatin (type A), FDA approved natural polymer was electrospun in a mixture of solvent (20% acetic acid in water) to yield long, continuous and uniform fibers with average diameter ∼ 200 nm. Piperine was chosen as a model hydrophobic drug in this study. As gelatin is highly soluble in aqueous medium, we crosslinked electrospun gelatin nanofibers using saturated GTA vapor to increase the water resistive properties. For controlled release over a period of 12 h, we devised several strategies to vary the crosslinking conditions and accordingly understand their effect on drug release mechanism. One of such successful efforts was based on deposition of multiple layers of electrospun fabric by sandwiching between drug loaded gelatin nanofibers and without drug gelatin nanofibers from both sides. Not only the layer by layer deposition, we also crosslinked the different layer in the same sequential way. Sequential crosslinking using GTA vapor in different layers of the fabric, helped in uniform crosslinking throughout the thickness compared to crosslinking after final deposition in the form of a single layer. Effect of different crosslinking strategies was investigated in terms of surface morphology and drug stability. Finally,in-vitrorelease study was performed maintaining the physiological conditions mimicking GI tract to analyze the effect of crosslinking on the drug release profile. Thein-vitrostudies concluded that the controlled drug release can be achieved by tuning the thickness of individual fabric layer followed by their sequential crosslinking, which finally affects the diffusional barrier for drug release. Interestingly, we also found that only 6 min exposure to saturated GTA vapor is sufficient to provide the required drug release in contrast to up to 24 h as reported in literature. This finding also addresses the toxicity problem associated with the use of GTA as a cross-linker.


Author(s):  
Nirmala Rangu ◽  
Gande Suresh

The present study was aimed to develop once-daily controlled release trilayer matrix tablets of nelfinavir to achieve zero-order drug release for sustained plasma concentration. Nelfinavir trilayer matrix tablets were prepared by direct compression method and consisted of middle active layer with different grades of hydroxypropyl methylcellulose (HPMC), PVP (Polyvinyl Pyrrolidine) K-30 and MCC (Micro Crystalline Cellulose). Barrier layers were prepared with Polyox WSR-303, Xanthan gum, microcrystalline cellulose and magnesium stearate. Based on the evaluation parameters, drug dissolution profile and release drug kinetics DF8 were found to be optimized formulation. The developed drug delivery system provided prolonged drug release rates over a period of 24 h. The release profile of the optimized formulation (DF8) was described by the zero-order and best fitted to Higuchi model. FT-IR studies confirmed that there were no chemical interactions between drug and excipients used in the formulation. These results indicate that the approach used could lead to a successful development of a controlled release formulation of nelfinavir in the management of AIDS.


1970 ◽  
Vol 4 (1) ◽  
pp. 38-48 ◽  
Author(s):  
Santhosh Kumar Mankala ◽  
Nishanth Kumar Nagamalli ◽  
Ramakrishna Raprla ◽  
Rajyalaxmi Kommula

Gliclazide is an oral hypoglycemic agent used in management of non-insulin dependent diabetes mellitus. Among people who are suffering from long term disorders, the major were categorized under diabetes so, a dosage form is needed to provide continuous therapy with high margin of safety & such dosage form can be achieved by microencapsulation. Gliclazide microspheres with sodium alginate (coat material, gum kondagogu, gum guar and xanthan gum (mucoadhesive agents) were prepared by orifice-ionic gelation and emulsification ionic gelation techniques varying concentrations (1:0.25, 1:0.5, 1:0.75 and 1:1). Formulations were then evaluated for surface morphology, particle shape, Carr’s index, microencapsulation efficiency, drug release, mucoadhesion studies. Compatibility studies were performed by FTIR, DSC, and XRD techniques and no interactions were found between drug and excepients used. The microspheres were found spherical and free flowing with emulsion ionic gelation technique with a size range 400-600μm. % drug content and encapsulation efficiency found in the range of 55%-68% and, 86.23%-94.46% respectively. All microspheres showed good mucoadhesive property in in-vitro wash of test. In vitro drug release studies showed that the guar gum has more potentiality to retard the drug release compared to other gums and concentrations. Drug release from the microspheres was found slow following zero order release kinetics with non-fickian release mechanism stating release depended on the coat: core ratio and the method employed. The concentration of 1:1 of SA: GG (EMG 4) found suitable for preparing the controlled release formulation of gliclazide stating emulsification gelation technique is the best among followed.   Key words: Gliclazide; Natural gums; orifice ionic gelation technique; emulsification ionic gelation technique DOI: http://dx.doi.org/10.3329/sjps.v4i1.8865 SJPS 2011; 4(1): 38-48


Author(s):  
Barkat Khan ◽  
Faheem Haider ◽  
Kifayat Shah ◽  
Bushra Uzair ◽  
Kaijian Hou ◽  
...  

This study was carried out to formulate and evaluate controlled release (CR) matrix tablets of Acyclovir using combination of hydrophilic and hydrophobic polymers. Acyclovir is a guanine derivative and is its half-life is short hence administered five times a day using immediate release tablets. Six formulations (F1-F6) were developed using Ethocel and Carbopol in equal combinations at drug-polymer (D:P) ratio of 10:5, 10:6, 10:7, 10:8, 10:9 and 10:10. Solubility study was performed using six different solvents. The compatibility studies were carried out using FTIR and DSC. According to USP, Quality Control and dimensional tests (hardness, friability, disintegration and thickness) were executed. In-vitro drug release studies of Acyclovir was carried out in dissolution apparatus using using 0.1 N HCl medium at constant temperature of 37 ± 0.5 ºC. In order to analyze the drug release kinetics, five different mathematical models were applied to the release data. The results showed that there was no incompatibility between drug and polymers. Physical QC tests were found within limits of USP. The release was retarded upto 24 hrs and non-fickian in-vitro drug release mechanism was found. A formulation developed using blend of polymers, showed excellent retention and desired release profiles thus providing absolute control for 24 hrs.


Sign in / Sign up

Export Citation Format

Share Document