Optimization Study to Develop Once-a-day Controlled Release Formulation of Metoclopramide with Predictable Design Space

Author(s):  
Rajesh Dubey ◽  
Udaya K. Chowdary ◽  
Venkateswarlu V.

A controlled release formulation of metoclopramide was developed using a combination of hypromellose (HPMC) and hydrogenated castor oil (HCO). Developed formulations released the drug over 20 hr with release kinetics following Higuchi model. Compared to HCO, HPMC showed significantly higher influence in controlling the drug release at initial as well as later phase. The difference in the influence can be explained by the different swelling and erosion behaviour of the polymers. Effect of the polymers on release was optimized using a face-centered central composite design to generate a predictable design space. Statistical analysis of the drug release at various levels indicated a linear effect of the polymers’ levels on the drug release. The release profile of formulations containing the polymer levels at extremes of their ranges in design space was found to be similar to the predicted release profile

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Rozita Ahmad ◽  
Mohd Zobir Hussein ◽  
Siti Halimah Sarijo ◽  
Wan Rasidah Wan Abdul Kadir ◽  
Taufiq-Yap Yun Hin

A new intercalation compound of insect pheromone, valeric acid (VA), based on zinc layered hydroxide (ZLH) as host release material, was successfully prepared through coprecipitation method. The as-produced organic-inorganic nanolayered material, valerate nanohybrid, VAN, shows the formation of a new peak at lower 2θ angle with basal spacing of 19.8 Å with no ZnO reflections, which indicate that the intercalation of anion between the inorganic ZLH interlamellae was accomplished. The elemental, FTIR, and ATR analyses of the nanohybrid supported the fact that the intercalation with the percentage anion loading was calculated to be 23.0% (w/w). The thermal stability property of the resulting nanohybrid was enhanced compared to the unbound anion. Field emission scanning electron micrograph of the ZnO has a nonuniform granular structure but transforms into flake-like structure with various sizes after the intercalation process. Release kinetics of anion from the interlayer of intercalated compound exhibited a slow release behavior governed by the pseudo-second-order kinetic model at different pHs of aqueous media. The valerate anion was released from VAN with the highest release rate at pH 4. These findings provide the basis to further development of controlled release formulation for insect pheromone based on ZLH intercalation.


Author(s):  
Nilam Patel ◽  
Rupal Jani

Conventional coating processes are based on aqueous or organic solvent system, resulting in the lengthy and tedious processes where use and removal of solvents consumes lots of energy and resources. Also, solvent disposal is a critical issue considering environmental hazard.Hot melt coating process avoids use of solvent and is short and energy-efficient process. Here, Hot-melt coating process (HMCP) is being developed to formulate lipid based oral controlled release formulation system to deliver highly water soluble Biopharmaceutical Classification System (BCS) class-I drug Levetiracetam. Pellets containing Active ingredient in the core portion were prepared by extrusion spheronization process with use of appropriate filler and binder. These core pellets were then coated using hot-melt coating technology with different levels of lipid and a hydrophilic component. Formulation and Process parameters were optimized to achieve targeted drug release profile and other target product profile with particular focus onHMCP. Quality by design (QbD) with DOE approach was used for designing and development of the formulation, by putting risk assessment Failure Mode and Effect analysis (FMEA, Fish-bone diagram), screening (by Plackett Burman), and optimization by Central Composite Design (CCC) studies. Appropriate ‘design space’ was proposed based on the optimization studies. The results demonstrated that the level of Low melting coating component and a hydrophilic component influenced the drug release rate from the formulation, and the rate of release could be optimized by varying the amount of these components in the formulation. Processing parameters like Temperature of the coating solution and atomization air, Atomization air pressure and Spray rate also affects the drug release rate and other parameters like coating efficiency and mean particle size. For optimized formulation, dissolution data model fitting was also carried out which adequately fits to Higuchi model suggesting that the drug release occurred predominantly by diffusion.


2011 ◽  
Vol 61 (1) ◽  
pp. 73-82 ◽  
Author(s):  
Ravikumar Patel ◽  
Jayvadan Patel

Development and evaluation of in situ novel intragastric controlled-release formulation of hydrochlorothiazide In situ forming intragastric controlled-release formulation is a new technology in the field of oral controlled-release delivery systems. The objective of this study was to develop formulations that can control drug release up to 24 hours. In addition, a combination of appropriate polymers and solvents was selected that could form a drug loaded gel at the process temperature of 60-70 °C, which gel could turn into a rigid mass upon exposure to dissolution fluid at body temperature. The drug release mechanism from this rigid mass was controlled by different formulation factors such as different polymer grades, polymer concentrations, hydrophobicity or hydrophilicity of solvents, different drug loadings, and physicochemical properties of additional excipients. After evaluating different formulation factors, Ethocel 10 FP and triethyl citrate were selected for further studies using hydrochlorothiazide as a model drug. Polynomial correlation between viscosity of the blank gel and drug release profile was also obtained.


Author(s):  
Nilam Patel ◽  
Rupal Jani

Hot-melt coating process (HMCP) is being developed to formulate lipid based oral controlled release formulation system for anti-epileptic drug Oxcarbazepine. Pellets containing Active ingredient in the core portion were prepared by extrusion spheronization process with use of appropriate filler and binder. These core pellets were then coated using hot-melt coating technology with different levels of solid lipid material and a hydrophilic component. Formulation and Process parameters were optimized to achieve targeted drug release profile and other target product profile with particular focus on HMCP. Quality by design (QbD) with DOE approach was used for designing and development of the formulation, by putting risk assessment (FMEA, Fish-bone diagram), screening (by Plackett Burman), and optimization (by CCC) studies. Appropriate ‘design space’ was proposed based on the optimization studies. The results demonstrated that the level of Low melting coating component and a hydrophilic component influenced the drug release rate from the formulation, and the rate of release could be optimized by varying the amount of these components in the formulation. Processing parameters like Temperature of the coating solution and atomization air, Atomization air pressure and Spray rate also affects the drug release rate and other parameters like coating efficiency and mean particle size. For optimized formulation, dissolution data model fitting was also carried out which adequately fits to Higuchi model suggesting that the drug release occurred predominantly by diffusion.


Author(s):  
Nirmala Rangu ◽  
Gande Suresh

The present study was aimed to develop once-daily controlled release trilayer matrix tablets of nelfinavir to achieve zero-order drug release for sustained plasma concentration. Nelfinavir trilayer matrix tablets were prepared by direct compression method and consisted of middle active layer with different grades of hydroxypropyl methylcellulose (HPMC), PVP (Polyvinyl Pyrrolidine) K-30 and MCC (Micro Crystalline Cellulose). Barrier layers were prepared with Polyox WSR-303, Xanthan gum, microcrystalline cellulose and magnesium stearate. Based on the evaluation parameters, drug dissolution profile and release drug kinetics DF8 were found to be optimized formulation. The developed drug delivery system provided prolonged drug release rates over a period of 24 h. The release profile of the optimized formulation (DF8) was described by the zero-order and best fitted to Higuchi model. FT-IR studies confirmed that there were no chemical interactions between drug and excipients used in the formulation. These results indicate that the approach used could lead to a successful development of a controlled release formulation of nelfinavir in the management of AIDS.


Author(s):  
Preethi G. B. ◽  
Prashanth Kunal

<p><strong>Objective: </strong>The current work was attempted to formulate and evaluate a controlled-release matrix-type ocular inserts containing a combination of brimonidine tartrate and timolol maleate, with a view to sustain the drug release in the cul-de-sac of the eye.<strong></strong></p><p><strong>Methods: </strong>Initially, the infrared studies were done to determine the drug–polymer interactions. Sodium alginate-loaded ocuserts were prepared by solvent casting technique. Varying the concentrations of polymer—sodium alginate, plasticizer—glycerine, and cross-linking agent—calcium chloride by keeping the drug concentration constant, made a total of nine formulations. These formulations were evaluated for its appearance, drug content, weight uniformity, thickness uniformity, percentage moisture loss, percentage moisture absorption, and <em>in vitro </em>release profile of the ocuserts. Finally, accelerated stability studies and the release kinetics were performed on the optimised formulation.<strong></strong></p><p><strong>Results: </strong>It was perceived that polymer, plasticizer, and calcium chloride had a significant influence on the drug release. The data obtained from the formulations showed that formulation—F9 was the optimised formulation, which exhibited better drug release. The release data of the optimised formulation tested on the kinetic models revealed that it exhibited first-order release kinetics. <strong></strong></p><p><strong>Conclusion: </strong>It can be concluded that a natural bioadhesive hydrophilic polymer such as sodium alginate can be used as a film former to load water soluble and hydrophilic drugs like brimonidine tartrate and timolol maleate. Among all formulations, F9 with 400 mg sodium alginate, 2% calcium chloride and 60 mg glycerin were found to be the most suitable insert in terms of appearance, ease of handling, thickness, <em>in vitro</em> drug release and stability.</p>


1970 ◽  
Vol 4 (1) ◽  
pp. 38-48 ◽  
Author(s):  
Santhosh Kumar Mankala ◽  
Nishanth Kumar Nagamalli ◽  
Ramakrishna Raprla ◽  
Rajyalaxmi Kommula

Gliclazide is an oral hypoglycemic agent used in management of non-insulin dependent diabetes mellitus. Among people who are suffering from long term disorders, the major were categorized under diabetes so, a dosage form is needed to provide continuous therapy with high margin of safety & such dosage form can be achieved by microencapsulation. Gliclazide microspheres with sodium alginate (coat material, gum kondagogu, gum guar and xanthan gum (mucoadhesive agents) were prepared by orifice-ionic gelation and emulsification ionic gelation techniques varying concentrations (1:0.25, 1:0.5, 1:0.75 and 1:1). Formulations were then evaluated for surface morphology, particle shape, Carr’s index, microencapsulation efficiency, drug release, mucoadhesion studies. Compatibility studies were performed by FTIR, DSC, and XRD techniques and no interactions were found between drug and excepients used. The microspheres were found spherical and free flowing with emulsion ionic gelation technique with a size range 400-600μm. % drug content and encapsulation efficiency found in the range of 55%-68% and, 86.23%-94.46% respectively. All microspheres showed good mucoadhesive property in in-vitro wash of test. In vitro drug release studies showed that the guar gum has more potentiality to retard the drug release compared to other gums and concentrations. Drug release from the microspheres was found slow following zero order release kinetics with non-fickian release mechanism stating release depended on the coat: core ratio and the method employed. The concentration of 1:1 of SA: GG (EMG 4) found suitable for preparing the controlled release formulation of gliclazide stating emulsification gelation technique is the best among followed.   Key words: Gliclazide; Natural gums; orifice ionic gelation technique; emulsification ionic gelation technique DOI: http://dx.doi.org/10.3329/sjps.v4i1.8865 SJPS 2011; 4(1): 38-48


Author(s):  
Barkat Khan ◽  
Faheem Haider ◽  
Kifayat Shah ◽  
Bushra Uzair ◽  
Kaijian Hou ◽  
...  

This study was carried out to formulate and evaluate controlled release (CR) matrix tablets of Acyclovir using combination of hydrophilic and hydrophobic polymers. Acyclovir is a guanine derivative and is its half-life is short hence administered five times a day using immediate release tablets. Six formulations (F1-F6) were developed using Ethocel and Carbopol in equal combinations at drug-polymer (D:P) ratio of 10:5, 10:6, 10:7, 10:8, 10:9 and 10:10. Solubility study was performed using six different solvents. The compatibility studies were carried out using FTIR and DSC. According to USP, Quality Control and dimensional tests (hardness, friability, disintegration and thickness) were executed. In-vitro drug release studies of Acyclovir was carried out in dissolution apparatus using using 0.1 N HCl medium at constant temperature of 37 ± 0.5 ºC. In order to analyze the drug release kinetics, five different mathematical models were applied to the release data. The results showed that there was no incompatibility between drug and polymers. Physical QC tests were found within limits of USP. The release was retarded upto 24 hrs and non-fickian in-vitro drug release mechanism was found. A formulation developed using blend of polymers, showed excellent retention and desired release profiles thus providing absolute control for 24 hrs.


Sign in / Sign up

Export Citation Format

Share Document