scholarly journals Cayley-Dickson Construction

2012 ◽  
Vol 20 (4) ◽  
pp. 281-290
Author(s):  
Artur Korniłowicz

Summary Cayley-Dickson construction produces a sequence of normed algebras over real numbers. Its consequent applications result in complex numbers, quaternions, octonions, etc. In this paper we formalize the construction and prove its basic properties.

2013 ◽  
Vol 21 (3) ◽  
pp. 185-191
Author(s):  
Keiko Narita ◽  
Noboru Endou ◽  
Yasunari Shidama

Summary In this article, we described basic properties of Riemann integral on functions from R into Real Banach Space. We proved mainly the linearity of integral operator about the integral of continuous functions on closed interval of the set of real numbers. These theorems were based on the article [10] and we referred to the former articles about Riemann integral. We applied definitions and theorems introduced in the article [9] and the article [11] to the proof. Using the definition of the article [10], we also proved some theorems on bounded functions.


Author(s):  
Arthur Benjamin ◽  
Gary Chartrand ◽  
Ping Zhang

This chapter considers Hamiltonian graphs, a class of graphs named for nineteenth-century physicist and mathematician Sir William Rowan Hamilton. In 1835 Hamilton discovered that complex numbers could be represented as ordered pairs of real numbers. That is, a complex number a + b i (where a and b are real numbers) could be treated as the ordered pair (a, b). Here the number i has the property that i² = -1. Consequently, while the equation x² = -1 has no real number solutions, this equation has two solutions that are complex numbers, namely i and -i. The chapter first examines Hamilton's icosian calculus and Icosian Game, which has a version called Traveller's Dodecahedron or Voyage Round the World, before concluding with an analysis of the Knight's Tour Puzzle, the conditions that make a given graph Hamiltonian, and the Traveling Salesman Problem.


1969 ◽  
Vol 21 ◽  
pp. 1309-1318 ◽  
Author(s):  
James Stewart

Let G be an abelian group, written additively. A complexvalued function ƒ, defined on G, is said to be positive definite if the inequality1holds for every choice of complex numbers C1, …, cn and S1, …, sn in G. It follows directly from (1) that every positive definite function is bounded. Weil (9, p. 122) and Raïkov (5) proved that every continuous positive definite function on a locally compact abelian group is the Fourier-Stieltjes transform of a bounded positive measure, thus generalizing theorems of Herglotz (4) (G = Z, the integers) and Bochner (1) (G = R, the real numbers).If ƒ is a continuous function, then condition (1) is equivalent to the condition that2


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 877
Author(s):  
Wolf-Dieter Richter

Dispensing with the common property of distributivity and replacing classical trigonometric functions with their l p -counterparts in Euler’s trigonometric representation of complex numbers, classes of l p -complex numbers are introduced and some of their basic properties are proved. The collection of all points that leave the l p -absolute value of each l p -complex number invariant under l p -complex numbers multiplication is shown to be a group of elements that have l p -absolute value one but not the symmetry group.


1995 ◽  
Vol 9 (4) ◽  
pp. 551-562
Author(s):  
Stephen J. Herschkorn

Let X be a random variable with characteristic function ϕ. In the case where X is integer-valued and n is a positive integer, a formula (in terms of ϕ) for the probability that n divides X is presented. The derivation of this formula is quite simple and uses only the basic properties of expectation and complex numbers. The formula easily generalizes to one for the distribution of X mod n. Computational simplifications and the relation to the inversion formula are also discussed; the latter topic includes a new inversion formula when the range of X is finite.When X may take on a more general distribution, limiting considerations of the previous formulas suggest others for the distribution, density, and moments of the fractional part X — [X]. These are easily derived using basic properties of Fourier series. These formulas also yield an alternative inversion formula for ϕ when the range of X is bounded.Applications to renewal theory and random walks are suggested. A by-product of the approach is a probabilistic method for the evaluation of infinite series.


1993 ◽  
Vol 2 (3) ◽  
pp. 77-106 ◽  
Author(s):  
Harry H. Cheng

The handling of complex numbers in the CHprogramming language will be described in this paper. Complex is a built-in data type in CH. The I/O, arithmetic and relational operations, and built-in mathematical functions are defined for both regular complex numbers and complex metanumbers of ComplexZero, Complexlnf, and ComplexNaN. Due to polymorphism, the syntax of complex arithmetic and relational operations and built-in mathematical functions are the same as those for real numbers. Besides polymorphism, the built-in mathematical functions are implemented with a variable number of arguments that greatly simplify computations of different branches of multiple-valued complex functions. The valid lvalues related to complex numbers are defined. Rationales for the design of complex features in CHare discussed from language design, implementation, and application points of views. Sample CHprograms show that a computer language that does not distinguish the sign of zeros in complex numbers can also handle the branch cuts of multiple-valued complex functions effectively so long as it is appropriately designed and implemented.


Author(s):  
Алексеенко ◽  
A. Alekseenko ◽  
Лихачева ◽  
M. Likhacheva

The article is devoted to the study of the peculiarities of real numbers in the discipline "Algebra and analysis" in the secondary school. The theme of "Real numbers" is not easy to understand and often causes difficulties for students. However, the study of this topic is now being given enough attention and time. The consequence is a lack of understanding of students and school-leavers, what constitutes the real numbers, irrational numbers. At the same time the notion of a real number is required for further successful study of mathematics. To improve the efficiency of studying the topic and form a clear idea about the different numbers offered to add significantly to the material of modern textbooks, increase the number of hours in the study of real numbers, as well as to include in the school course of algebra topics "Complex numbers" and "Algebraic structures".


2013 ◽  
Vol 11 (01) ◽  
pp. 1350001 ◽  
Author(s):  
MATTHEW McKAGUE

We consider the power of various quantum complexity classes with the restriction that states and operators are defined over a real, rather than complex, Hilbert space. It is well known that a quantum circuit over the complex numbers can be transformed into a quantum circuit over the real numbers with the addition of a single qubit. This implies that BQP retains its power when restricted to using states and operations over the reals. We show that the same is true for QMA (k), QIP (k), QMIP and QSZK.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Mengji Shi ◽  
Kaiyu Qin

This paper solves control problems of agents achieving consensus motions in presence of nonuniform time delays by obtaining the maximal tolerable delay value. Two types of consensus motions are considered: the rectilinear motion and the rotational motion. Unlike former results, this paper has remarkably reduced conservativeness of the consensus conditions provided in such form: for each system, if all the nonuniform time delays are bounded by the maximal tolerable delay value which is referred to as “delay margin,” the system will achieve consensus motion; otherwise, if all the delays exceed the delay margin, the system will be unstable. When discussing the system which is intended to achieve rotational consensus motion, an expanded system whose state variables are real numbers (those of the original system are complex numbers) is introduced, and corresponding consensus condition is given also in the form of delay margin. Numerical examples are provided to illustrate the results.


Sign in / Sign up

Export Citation Format

Share Document