scholarly journals Economizer Selection Method with Reference to its Reliability at Preliminary Design Stage of Seagoing Vessels

2009 ◽  
Vol 9-10 (1) ◽  
pp. 35-44
Author(s):  
Charchalis Adam ◽  
Krefft Jerzy

Economizer Selection Method with Reference to its Reliability at Preliminary Design Stage of Seagoing Vessels The economizers are used for production of steam heating on en route ships. The economizers are producing steam in a heat exchange process from the ship's main engine exhaust gas. Products of the incomplete combustion of the heavy fuel oil remaining in engines, passing the boiler, collect on the heat exchange surface of the economizer. When the incorrect assumptions are made for the boiler operation conditions, the boiler steam capacity drops and fire and burning of the incomplete combustion products can occur in the economizer. To minimize combustion product quantity that collects on the boiler surface, the allowable exhaust gas pressure drop in the boiler should be taken into consideration, as well as the results from recommended exhaust gas flow velocity that is determined by main engine service load determined in the preliminary design phase of the ship. The remaining operating conditions are made in such a way to obtain high steam capacity of the boiler. It is essential at the design stage to take into consideration the future operating parameters of the combustion-steam-water installation, since these parameters depend on the choice of boiler and determined at the design stage production of steam. On the basis of operation parameters of contemporary container ships, an attempt was made to select economizer capacity in the preliminary design stage taking into consideration operation conditions of the propulsion system-steam installations unit in aspect of economizer reliability.

1995 ◽  
Vol 11 (04) ◽  
pp. 245-251
Author(s):  
Dongkon Lee ◽  
Kyung-Ho Lee ◽  
Soon-Hung Han

The propulsion system is one of the most complicated systems in a ship and its performance greatly depends on the selection of the main engine. Also, the propulsion system occupies a large portion of the total shipbuilding cost, as well as a large portion of the annual operating cost in fuel consumption. Selecting the right propulsion system is an important factor consideration for shipowners and designers. In the preliminary stage of ship design, the main engine is selected by a design expert and this usually is a difficult task for a novice designer. With the help of a design support system, efficiency in selecting the right engine can be increased. In this study, a knowledge-based system for engine selection which can be used in the preliminary design stage for a merchant ship has been developed. The knowledge base is constructed using heuristic knowledge acquired from design experts. Two databases of engine catalogs and of existing ships are also constructed. Various performance prediction modules of the domain of naval architecture are integrated with the knowledge bases and databases. To enhance the user interface, a graphical user interface (GUI) built upon the Motif widgets is adapted.


Structures ◽  
2021 ◽  
Vol 31 ◽  
pp. 395-405
Author(s):  
Arsalan Alavi ◽  
Elena Mele ◽  
Reza Rahgozar ◽  
Ehsan Noroozinejad Farsangi ◽  
Izuru Takewaki ◽  
...  

1999 ◽  
Vol 36 (03) ◽  
pp. 171-174
Author(s):  
Hüseyin Yilmaz ◽  
Abdi Kükner

It is well known that stability is the most important safety requirement for ships. One should have some information on ship stability at the preliminary design stage in order to reduce risk. Initial stability of ships is an important criterion and can be closely evaluated in terms of form parameters and vertical center of gravity. In this study, using some sample ship data, approximate formulations are derived by means of regression analysis for the calculations expressed in terms of ship preliminary design parameters that can easily provide approximate GM calculations. Thus designers can be provided with ship stability at the preliminary design stage, and also a set of appropriate design parameters for improving vessel stability can easily be determined.


2021 ◽  
Author(s):  
Sacheen Bekah

This thesis presents the use of Finite Element (FE) based fatigue analysis to locate the critical point of crack initiation and predict life in a door hinge system that is subjected to both uni-axial and multi-axial loading. The results are experimentally validated. The FE model is further used to obtain an optimum design per the standard requirement in the ground vehicle industry. The accuracy of the results showed that FE based fatigue analysis can be successfully employed to reduce costly and time-consuming experiments in the preliminary design stage. Numerical analysis also provides the product design engineers with substantial savings, enabling the testing of fewer prototypes.


2021 ◽  
Author(s):  
Sacheen Bekah

This thesis presents the use of Finite Element (FE) based fatigue analysis to locate the critical point of crack initiation and predict life in a door hinge system that is subjected to both uni-axial and multi-axial loading. The results are experimentally validated. The FE model is further used to obtain an optimum design per the standard requirement in the ground vehicle industry. The accuracy of the results showed that FE based fatigue analysis can be successfully employed to reduce costly and time-consuming experiments in the preliminary design stage. Numerical analysis also provides the product design engineers with substantial savings, enabling the testing of fewer prototypes.


2015 ◽  
Vol 22 (1) ◽  
pp. 28-35
Author(s):  
Katarzyna Żelazny

Abstract During ship design, its service speed is one of the crucial parameters which decide on future economic effects. As sufficiently exact calculation methods applicable to preliminary design stage are lacking the so called contract speed which a ship reaches in calm water is usually applied. In the paper [11] a parametric method for calculation of total ship resistance in actual weather conditions (wind, waves, sea current), was presented. This paper presents a parametric model of ship propulsion system (screw propeller - propulsion engine) as well as a calculation method, based on both models, of mean statistical value of ship service speed in seasonal weather conditions occurring on shipping lines. The method makes use of only basic design parameters and may be applied in preliminary design stage.


1995 ◽  
Vol 11 (04) ◽  
pp. 252-263
Author(s):  
Walter L. Christensen ◽  
Philip C. Koenig

Standard outfit package units for reverse osmosis plants, fire pumps, steering gear, and sanitary spaces were proposed for the LPD 17 amphibious transport dock ship design. The ship was in the preliminary design stage, and it was necessary to determine how this shift to outfit modularity would affect the ship procurement program. Because the use of package units would not have a significant impact on the overall characteristics and performance of the ship, the focus of the investigation was on material ordering and production scheduling. The analysis took account of zone-area-stage outfitting methods and also more traditional practices. With either approach, it was found that the package units did not present any schedule or procurement problems This particular study was focused on a very specific issue, but the approach is applicable to a wide range of production impact assessment problems.


2001 ◽  
Vol 38 (02) ◽  
pp. 92-94
Author(s):  
Huseyin Yilmaz ◽  
Mesut Giiner

In this study, a formula is presented to estimate cross curves of cargo vessels and to predict statical stability at the preliminary design stage of the vessel. The predictive technique is obtained by regression analysis of systematically varied cargo vessel series data. In order to achieve this procedure, some cargo vessel forms are generated using Series-60. The mathematical model in this predictive technique is constructed as a function of design parameters such as length, beam, depth, draft, and block coefficient. The prediction method developed in this work can also be used to determine the effect of specific hull form parameters and the load conditions on stability of cargo vessels. The present method is applied to a cargo vessel and then the results of the actual ship are compared with those of regression values.


Aviation ◽  
2005 ◽  
Vol 9 (3) ◽  
pp. 29-35
Author(s):  
Jerzy Bakunowicz ◽  
Tomasz Kopecki

Modern aircraft safety depends on sufficient strength and rigidity of the structure. This must sustain with lightest possible weight, because any excess mass has not only detrimental effect upon the performance but also is significant economic factor. The most rational way to achieve the proper structure seems to be global analysis commenced in the preliminary design stage already. The analysis outcomes provide base for local analysis of the details led parallel. Any revisions more or less relevant can be made in the numerical model with very expensive prototype changes avoiding. The paper illustrates efficiency of the airframe structure global analysis. As examples the aircrafts still in service but designed without computer application were chosen. The finite elements numerical model of each was created and some critical in-flight load cases were simulated.


Sign in / Sign up

Export Citation Format

Share Document