scholarly journals Changes of total annual runoff distribution, high and low discharges in Latvian rivers

Author(s):  
Elga Apsīte ◽  
Anda Bakute ◽  
Ilze Rudlapa

Changes of total annual runoff distribution, high and low discharges in Latvian rivers The paper examines climate change impacts on the hydrological regime of nineteen different river basins in Latvia. Hydrological data series for the period of 1951-2006 were analysed for river basins of four hydrological districts: Western, Central, Northern and Eastern. Climate change has influenced the temporal and spatial distribution of total annual river runoff and high and low flows in Latvia at the turn of century. The results confirm the hypothesis that the main tendency in the run-off change is a decrease in spring floods and increase in winter. Generally, statistically insignificant long-term trends were observed for summer and autumn.

2020 ◽  
Vol 9 (2) ◽  
pp. 184-203
Author(s):  
Arshad Ashraf ◽  
Ghani Akbar

Cryosphere-fed kuhl irrigation system forms a major lifeline for agriculture and livelihood development in the Himalayan region. The system is highly vulnerable to climate change impacts like glacier retreat, glacial lake outburst floods, snow avalanches and landslides especially in the upper Indus Basin (UIB). It is necessary to conduct reassessment of climate change impacts and find coping strategies for sustainable agriculture development in this mountainous region. In the present study, risks of glacier depletion , lakes outburst flood, snow avalanche and landslide hazards impacting cryosphere-fed kuhl irrigation system in 10 river basins of the UIB of Pakistan were analyzed using multi-hazard indexing approach. High risk of glacier depletion was observed in the Astore and Swat river basins likely because of the combined effect of reduced snow precipitation and rising warm temperatures in these basins. The risk of expansion in aggregate lake area was high in the Indus sub-basin, moderate in the five basins (i.e., Hunza, Shigar, Shyok, Shingo and Astore), while it was low in the four basins (i.e., Swat, Chitral, Gilgit and Jhelum). More than 2% areas of Hunza and Shigar basins in the Karakoram range exhibited high risk of snow avalanche and landslide (SAL) hazard, while moderate SAL hazard was found in >40% areas of Chitral, Gilgit, Hunza and Shigar river basins. An effective early warning mechanism and provision of adequate resources for preparedness are essential to cope with negative impacts of climate change on irrigated agriculture in this region in future.


2013 ◽  
Vol 405-408 ◽  
pp. 2167-2171 ◽  
Author(s):  
Zhou Li ◽  
Xiao Yan Li ◽  
Juan Sun

Climate is an important factor which formed and affected surface water resources. Through sensitivity analysis of natural runoff towards climate change, assuming the main factors effect runoff are precipitation and temperature, then according to the possible tendency of climate changes in the future, set climate scenarios, and use the hydrological model simulate the changes trend of runoff under different climate scenarios, thereby analyze the climate change impacts on surface water resources. The results show that annual runoff will be increased with the increasing annual precipitation, and it will be reduced with rise of annual temperature, the sensitivity that annual runoff towards the change of precipitation and temperature are equally notable, both of them are two major factors impact on the change of runoff and the precipitation change impacts on annual runoff will be even more obvious in flood season. Last, with the global warming trend, put forward the corresponding adaptive measures of energy conservation and emissions reduction。


2019 ◽  
Vol 01 (01) ◽  
pp. 1950003 ◽  
Author(s):  
AIDI HUO ◽  
XIAOFAN WANG ◽  
YUXIANG CHENG ◽  
CHUNLI ZHENG ◽  
CHENG JIANG

Assessing the impacts of climate change on hydrological regime and associated social and economic activities (such as farming) is important for water resources management in any river basin. In this study, we used the popular Soil and Water Assessment Tool (SWAT) to evaluate the impacts of future climate change on the availability of water resources in the Heihe River basin located within Shaanxi Province, China, in terms of runoff and streamflow. The results show that over the next 40 years (starting in 2020 till 2059), changes in the averaged annual runoff ratio are approximately [Formula: see text]11.0%, [Formula: see text]6.4%, 7.2%, and 20.4% for each of the next four consecutive decades as compared to the baseline period (2010–2019). The predicted annual runoff demonstrates an increase trend after a reduction and may result in increased drought and flood risk in the Heihe River basin. To minimize or mitigate these impacts, various adaptation methods have been proposed for the study area, such as stopping irrigation, flood control operation; reasonable development and utilization of regional underground water sources should be implemented in Zhouzhi county and Huyi region in the lower reaches of Heihe River basin.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1976 ◽  
Author(s):  
Johannes Hunink ◽  
Gijs Simons ◽  
Sara Suárez-Almiñana ◽  
Abel Solera ◽  
Joaquín Andreu ◽  
...  

European agriculture and water policies require accurate information on climate change impacts on available water resources. Water accounting, that is a standardized documentation of data on water resources, is a useful tool to provide this information. Pan-European data on climate impacts do not recognize local anthropogenic interventions in the water cycle. Most European river basins have a specific toolset that is understood and used by local experts and stakeholders. However, these local tools are not versatile. Thus, there is a need for a common approach that can be understood by multi-fold users to quantify impact indicators based on local data and that can be used to synthesize information at the European level. Then, policies can be designed with the confidence that underlying data are backed-up by local context and expert knowledge. This work presents a simplified water accounting framework that allows for a standardized examination of climate impacts on water resource availability and use across multiple basins. The framework is applied to five different river basins across Europe. Several indicators are extracted that explicitly describe green water fluxes versus blue water fluxes and impacts on agriculture. The examples show that a simplified water accounting framework can be used to synthesize basin-level information on climate change impacts which can support policymaking on climate adaptation, water resources and agriculture.


2020 ◽  
Author(s):  
Claudie Beaulieu ◽  
Matthew Hammond ◽  
Stephanie Henson ◽  
Sujit Sahu

<p>Assessing ongoing changes in marine primary productivity is essential to determine the impacts of climate change on marine ecosystems and fisheries. Satellite ocean color sensors provide detailed coverage of ocean chlorophyll in space and time, now with a combined record length of just over 20 years. Detecting climate change impacts is hindered by the shortness of the record and the long timescale of memory within the ocean such that even the sign of change in ocean chlorophyll is still inconclusive from time-series analysis of satellite data. Here we use a Bayesian hierarchical space-time model to estimate long-term trends in ocean chlorophyll. The main advantage of this approach comes from the principle of ”borrowing strength” from neighboring grid cells in a given region to improve overall detection. We use coupled model simulations from the CMIP5 experiment to form priors to provide a “first guess” on observational trend estimates and their uncertainty that we then update using satellite observations. We compare the results with estimates obtained with the commonly used vague prior, reflecting the case where no independent knowledge is available.  A global average net positive chlorophyll trend is found, with stronger regional trends that are typically positive in high and mid latitudes, and negative at low latitudes outside the Atlantic. The Bayesian hierarchical model used here provides a framework for integrating different sources of data for detecting trends and estimating their uncertainty in studies of global change.</p>


2020 ◽  
Author(s):  
Hanna Bolbot ◽  
Vasyl Grebin

<p>The most urgent tasks facing hydrologists of Ukraine and the world include identifying patterns of rivers hydrological regime against the background of global warming, and assessing these changes. Changes in the annual runoff distribution under climate change impact require separate investigation of anthropogenically altered catchments, such as the Siverskyi Donets River Basin. Siverskyi Donets is the largest river in Eastern Ukraine and the main source of water supply for Kharkiv, Luhansk and Donetsk regions.</p><p>The annual runoff distribution of the Siverskyi Donets River Basin was evaluated by two periods: to the beginning of pronounced climatic changes and the current period. The research is proposed for three water year types: wet year, average year and dry year. The Siverskyi Donets Basin is a complicated water body with peculiar physico-geographical conditions, because of that annual runoff distribution is somewhat different for the left-bank tributaries, right-bank tributaries and, in fact, the Siverskyi Donets River itself.</p><p>It is found that the most runoff of the wet year for both periods is in the spring months. The current period is characterized by a much smaller runoff of spring flood (from the volume of annual runoff) than in the previous period. The annual runoff distribution is offset. Some differences can be observed between the left and right tributaries. For the left-bank tributaries, which has less anthropogenic load, climate change has led to a significant increase of winter and summer-autumn low flow periods. On the right tributaries of the Siverskyi Donets, which are flowing within the industrial part of the Donbass, the low flow period has not changed, or even decreased. Such situation is due to the decrease of mine water disposal because of the industrial production decrease in the region.</p><p>The largest part of the annual runoff in the average year falls on February and March. In the current period, the spring flood has decreased, but the summer and autumn low flow period has increased. The left-bank tributaries runoff during the winter low period is decrease. Instead, the runoff attributable to the autumn and winter low period has increased for the right-bank tributaries and the Siverskyi Donets itself.</p><p>Analyzing the runoff distribution of dry year, we can conclude that the most wet is February. At present, in dry years, spring flood practically are not allocated from the hydrograph; the baseflow months runoff significantly increased. The volume of winter runoff of the Siverskyi Donets River Basin is increased. Actually, for the Siverskyi Donets River the runoff of the summer period has increased and the runoff of the winter and autumn periods has decreased at the present stage.</p><p>The annual runoff distribution of the Siverskyi Donets River Basin in the current climate change has undergone significant changes: the spring flood has decreased and the summer-autumn low flow has increased.</p>


Hydrology ◽  
2018 ◽  
Vol 5 (1) ◽  
pp. 21 ◽  
Author(s):  
Ansoumana Bodian ◽  
Alain Dezetter ◽  
Lamine Diop ◽  
Abdoulaye Deme ◽  
Koffi Djaman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document