scholarly journals Parametric Study on the Effects of Soil to Oscillation Velocity / Parametrická Studie Vlivu Typu Zeminy Na Amplitudu Rychlosti Kmitání

Author(s):  
Tomáš Petřík ◽  
Eva Hrubešová ◽  
Martin Stolárik ◽  
Miroslav Pinka

Abstract The paper focuses on the possibility of evaluating the influence of character of the soil to oscillations velocity induced dynamic loads. Mathematical modeling is used to solve the parametric study. Models are created in software Plaxis 2d based on finite element method. Dynamic load is based on experimental measurements on the stand in the area of the Faculty of Civil Engineering, VSB-TUO. Soil properties are determined from the normative indicative characteristics.

2014 ◽  
Vol 4 (4) ◽  
pp. 26-33
Author(s):  
P.Deepak Kumar ◽  
◽  
Ishan Sharma ◽  
P.R. Maiti ◽  
◽  
...  

Author(s):  
Er. Hardik Dhull

The finite element method is a numerical method that is used to find solution of mathematical and engineering problems. It basically deals with partial differential equations. It is very complex for civil engineers to study various structures by using analytical method,so they prefer finite element methods over the analytical methods. As it is an approximate solution, therefore several limitationsare associated in the applicationsin civil engineering due to misinterpretationof analyst. Hence, the main aim of the paper is to study the finite element method in details along with the benefits and limitations of using this method in analysis of building components like beams, frames, trusses, slabs etc.


Author(s):  
Ah-Young Park ◽  
Satish Chaparala ◽  
Seungbae Park

Through-silicon via (TSV) technology is expected to overcome the limitations of I/O density and helps in enhancing system performance of conventional flip chip packages. One of the challenges for producing reliable TSV packages is the stacking and joining of thin wafers or dies. In the case of the conventional solder interconnections, many reliability issues arise at the interface between solder and copper bump. As an alternative solution, Cu-Cu direct thermo-compression bonding (CuDB) is a possible option to enable three-dimension (3D) package integration. CuDB has several advantages over the solder based micro bump joining, such as reduction in soldering process steps, enabling higher interconnect density, enhanced thermal conductivity and decreased concerns about intermetallic compounds (IMC) formation. Critical issue of CuDB is bonding interface condition. After the bonding process, Cu-Cu direct bonding interface is obtained. However, several researchers have reported small voids at the bonded interface. These defects can act as an initial crack which may lead to eventual fracture of the interface. The fracture could happen due to the thermal expansion coefficient (CTE) mismatch between the substrate and the chip during the postbonding process, board level reflow or thermal cycling with large temperature changes. In this study, a quantitative assessment of the energy release rate has been made at the CuDB interface during temperature change finite element method (FEM). A parametric study is conducted to analyze the impact of the initial crack location and the material properties of surrounding materials. Finally, design recommendations are provided to minimize the probability of interfacial delamination in CuDB.


Author(s):  
Iskandar Hasanuddin ◽  
Husaini ◽  
M. Syahril Anwar ◽  
B.Z. Sandy Yudha ◽  
Hasan Akhyar

Author(s):  
Davood Dehestani ◽  
Hung Nguyen ◽  
Fahimeh Eftekhari ◽  
Jafar Madadnia ◽  
Steven Su ◽  
...  

1982 ◽  
Vol 104 (2) ◽  
pp. 323-328 ◽  
Author(s):  
P. E. Frivik ◽  
G. Comini

In this paper we describe a system of computer programs based on the finite element method, which can be used for the calculation of coupled velocity and temperature fields during freezing and thawing of soils in the presence of seepage flow. In the programs, the mass and energy conservation equations are solved simultaneously, without the use of too limiting assumptions. The results of the computations are compared with experimental measurements made on a laboratory model of a soil freezing system, and the agreement between measured and computed values is good.


Sign in / Sign up

Export Citation Format

Share Document