scholarly journals The Effect of a Complex Stress State on Fatigue Crack Propagation and the Orientation of the Cracking Plane in VT3-1 Aeronautical Titanium Alloy

2009 ◽  
Vol 2009 (1) ◽  
pp. 116-130
Author(s):  
Dorota Kocańda ◽  
Janusz Mierzyński

The Effect of a Complex Stress State on Fatigue Crack Propagation and the Orientation of the Cracking Plane in VT3-1 Aeronautical Titanium AlloyThe subject of the paper is the investigations of fatigue crack imitation and propagation in notched specimens made of the VT3-1 aeronautical russian titanium alloy under combined bending - torsion loading. The presence of short cracks was revealed at various ratios of bending to torsion. Experimental courses of short and long crack growth rates have been proved by the SEM and TEM micrographs which illustrated the changes in the mechanism of cracking in the examined specimens. The attempt was undertaken in order to explain partly brittle fracture that was observed in the range of fatigue short crack growth in the VT3-1 titanium alloy specimens. The results of the study of atmospheric hydrogen absorption capability and its ability for penetration inside the faces of nucleated and propagated microcracks in the surface layer allowed for suggestion that the cleavage mechanism of fracture found in the regime of short crack growth in the VT3-1 titanium alloy specimens was induced by hydrogen.

2011 ◽  
Vol 361-363 ◽  
pp. 1422-1425
Author(s):  
Wen Xiao Zhang ◽  
Guo Dong Gao ◽  
Guang Yu Mu

The crack propagation law of 2.25Cr-1Mo steel with notched cylinder was researched under high temperature low cycle fatigue. The crack propagation life was viewed by fatigue experiment and the equivalent stress-strain on the crack tip was calculated by the ANSYS. The equivalent J-integral range which was computed by equivalent elastic and plastic strain ranges were employed to denote the fatigue crack propagation rate. The results showed that crack propagation law of this material under complex stress state can be characterized by equivalent J-integral ranges and the relation between da/dN and ΔJf is not influenced by the type of notch and the load strain range.


2004 ◽  
Vol 126 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Yanyao Jiang ◽  
Miaolin Feng

Fatigue crack propagation was modeled by using the cyclic plasticity material properties and fatigue constants for crack initiation. The cyclic elastic-plastic stress-strain field near the crack tip was analyzed using the finite element method with the implementation of a robust cyclic plasticity theory. An incremental multiaxial fatigue criterion was employed to determine the fatigue damage. A straightforward method was developed to determine the fatigue crack growth rate. Crack propagation behavior of a material was obtained without any additional assumptions or fitting. Benchmark Mode I fatigue crack growth experiments were conducted using 1070 steel at room temperature. The approach developed was able to quantitatively capture all the important fatigue crack propagation behaviors including the overload and the R-ratio effects on crack propagation and threshold. The models provide a new perspective for the R-ratio effects. The results support the notion that the fatigue crack initiation and propagation behaviors are governed by the same fatigue damage mechanisms. Crack growth can be treated as a process of continuous crack nucleation.


Author(s):  
João Ferreira ◽  
José A. F. O. Correia ◽  
Grzegorz Lesiuk ◽  
Sergio Blasón González ◽  
Maria Cristina R. Gonzalez ◽  
...  

Pressure vessels and piping are commonly subjected to plastic deformation during manufacturing or installation. This pre-deformation history, usually called pre-strain, may have a significant influence on the resistance against fatigue crack growth of the material. Several studies have been performed to investigate the pre-strain effects on the pure mode I fatigue crack propagation, but less on mixed-mode (I+II) fatigue crack propagation conditions. The present study aims at investigating the effect of tensile plastic pre-strain on fatigue crack growth behavior (da/dN vs. ΔK) of the P355NL1 pressure vessel steel. For that purpose, fatigue crack propagation tests were conducted on specimens with two distinct degrees of pre-strain: 0% and 6%, under mixed mode (I+II) conditions using CTS specimens. Moreover, for comparison purposes, CT specimens were tested under pure mode I conditions for pre-strains of 0% and 3%. Contrary to the majority of previous studies, that applied plastic deformation directly on the machined specimen, in this work the pre-straining operation was carried out prior to the machining of the specimens with the objective to minimize residual stress effects and distortions. Results revealed that, for the P355NL1 steel, the tensile pre-strain increased fatigue crack initiation angle and reduced fatigue crack growth rates in the Paris region for mixed mode conditions. The pre-straining procedure had a clear impact on the Paris law constants, increasing the coefficient and decreasing the exponent. In the low ΔK region, results indicate that pre-strain causes a decrease in ΔKth.


2014 ◽  
Vol 891-892 ◽  
pp. 923-928 ◽  
Author(s):  
Olivier M.D.M. Messé ◽  
Joel Lachambre ◽  
Andrew King ◽  
Jean Yves Buffière ◽  
Cathie M.F. Rae

Evaluation of superalloy component life in turbine engines requires a detailed understanding of how fatigue crack initiation and short crack propagation contribute to fatigue life. However most investigations have been carried out post-mortem and in two dimensions. New techniques are able to fully resolve cracks propagating in four dimensions (space and time), enabling characterisation of their local environments and allowing a much deeper understanding of fatigue mechanics. Nickel-based superalloys experiencing high cycle fatigue have shown a high sensitivity to microstructure during initiation and short crack propagation. Using high energy X-rays and the combination of Diffraction Contrast Tomography (DCT) and Phase Contrast Tomography (PCT), we followed a fatigue crack initiated from a Focused Ion Beam (FIB) milled notch at room temperature. Analyses have been carried out to fully characterise the crack and its environment. We tracked the evolution of the crack and interactions with the microstructure. Subsequently, post-mortem investigations have been carried out to corroborate results obtained from the tomographs and to provide more local information of fatigue crack propagation.


2018 ◽  
Vol 1146 ◽  
pp. 44-56 ◽  
Author(s):  
János Lukács ◽  
Ádám Dobosy ◽  
Marcell Gáspár

The objective of the paper is to present the newest results of our complex research work. In order to determination and comparison of the fatigue resistance, fatigue crack growth tests were performed on different grades of S690QL quenched and tempered, and S960TM thermomechanically rolled high strength steels.15 mmand30 mmthick base materials were used for our investigations. Welded joints were made from these base materials, using gas metal arc welding with matching, overmatching, and undermatching filler metals. In the paper, the performance of the welding experiments will be presented, especially with the difficulties of the filler material selection; along with the results of the fatigue crack growth examinations executed on the base materials and its welded joints. Statistical aspects were applied both for the presenting of the possible locations of the cracks in the base materials and the welded joints and for the processing of the measured data. Furthermore, the results will be compared with each other, and the possibility of derivation of fatigue crack propagation limit curves will be referred.


Author(s):  
Kokleang Vor ◽  
Catherine Gardin ◽  
Christine Sarrazin-Baudoux ◽  
Jean Petit ◽  
Claude Amzallag

The scope of this study is to investigate the effect of tensile prestrain on crack growth behavior in a 304L stainless steel. Fatigue crack propagation tests were performed on single-edge notched tension (SENT) raw specimens (0% of prestrain) and on prestrained specimens (2% and 10%). On one hand, it is found that the different levels of prestrain exhibit no significant influence on crack propagation in the high range of Stress Intensity Factor (SIF), where there is no detectable crack closure. On the other hand, a clear effect of prestrain on crack growth rate can be observed in the near threshold region where closure is detected. Thus, it can be concluded that the prestrain mainly affects the crack growth rate through its influence on the crack closure.


1974 ◽  
Vol 96 (4) ◽  
pp. 249-254 ◽  
Author(s):  
L. A. James

Linear-elastic fracture mechanics techniques were used to characterize the fatigue-crack propagation behavior of Incoloy 800 in an air environment over the temperature range 75 to 1200 deg F (24 to 649 deg F). Crack growth rates were measured over the range 5×10−7 to 5×10−5 in./cycle. Material Grades 1 and 2 were found to exhibit essentially the same behavior over this range. In general, crack growth rates increased with increasing test temperature, although the increases were less then previously noted for austenitic stainless steels. This difference is probably related to the superior oxidation resistance of Incoloy 800.


Sign in / Sign up

Export Citation Format

Share Document