Numerical Analysis of Influence of the Martensite Volume Fraction on Dp Steels Behavior During Plastic Deformation / Analiza Numeryczna Wpływu Ułamka Objetosci Martenzytu Na Zachowanie Stali Dp Podczas Odkształcenia Plastycznego

2013 ◽  
Vol 58 (1) ◽  
pp. 211-215 ◽  
Author(s):  
K. Perzynski ◽  
Ł. Madej

Development of a comprehensive fracture model, which takes into account crack initiation and propagation behavior at the microscale level in the Dual Phase (DP) steels is presented in the present paper. At this stage of the research Authors proposed a numerical model, which takes into account ductile crack initiation and propagation through the ferrite phase. Developed model is based on digital material representation (DMR) of DP microstructure, which takes opportunity for modeling crack phenomena in an explicit manner. Proposed model of ductile crack behavior in the ferritic phase is based on the Johnson-Cook model. Particular attention is put on investigation of influence of martensite volume fraction in microstructure on failure behavior. Obtained results for two significantly different martensite volume fractions in the investigated microstructure are presented in this work

Author(s):  
Antonio Carlucci ◽  
Nicola Bonora ◽  
Andrew Ruggiero ◽  
Gianluca Iannitti ◽  
Domenico Gentile

Bimetallic girth welds are characteristics of clad pipe technology. When dealing with propagation issues, fracture mechanics concepts usually are no longer applicable as a result of the extensive and non-homogeneous plastic deformation along bi-material interface that occur at the crack tip even below design allowables. In this study, ductile crack initiation and propagation in bi-material girth welds was investigated using a Continuum Damage Mechanics (CDM) model proposed by Bonora [1]. For the base, weld and clad metal, ductile damage model parameters have been determined by means of inverse calibration technique using fracture data obtained on smooth and round notched tensile bar specimens. Firstly, the damage model was validated predicting ductile crack growth occurring in single end notch (SEN(T)) geometry sample comparing the applied load vs crack mouth opening displacement with experimental measurements. Successively, the model was used to investigate ductile crack initiation and propagation for under clad circumferential weld crack under remote tension.


Sign in / Sign up

Export Citation Format

Share Document