Hrtem Observation of the Precipitates in Cu and Ag Added Al-Mg-Si Alloys

2013 ◽  
Vol 58 (2) ◽  
pp. 363-364
Author(s):  
M. Tokuda ◽  
K. Matsuda ◽  
T. Nagai ◽  
T. Kawabata ◽  
J. Nakamura ◽  
...  

It has been known that Cu- and Ag-added Al-1.0mass%Mg2Si alloys (Al-Mg-Si-Cu alloy and Al-Mg-Si-Ag alloy) have higher hardness and elongation than those of Al-1.0mass%Mg2Si alloy. In this study, the aging behaviour of Al-Mg-Si-Cu alloy, Al-Mg-Si-Ag alloy and (Cu+Ag)-addition Al -1.0 mass% Mg2Si alloy has been investigated by hardness test and TEM observation. The Al-Mg-Si-Cu-Ag alloy has the fastest age-hardening rate in the early aging period and the finest microstructure at the peak hardness among three alloys. Therefore the microstructure of the precipitate in Al-Mg-Si-Cu-Ag alloy has been investigated by HRTEM observation to understand the effect of Cu and Ag addition on aging precipitation.

2011 ◽  
Vol 409 ◽  
pp. 81-83
Author(s):  
Momoko Tokuda ◽  
Kenji Matsuda ◽  
Takeshi Nagai ◽  
Junya Nakamura ◽  
Tokimasa Kawabata ◽  
...  

It has been known that Cu-and Ag-addition Al-1.0mass%Mg2Si alloys (Al-Mg-Si-Cu alloy and Al-Mg-Si-Ag alloy) have higher hardness and elongation than those of Al-1.0mass%Mg2Si alloy. In this study, the aging behaviour of Al-Mg-Si-Cu alloy, Al-Mg-Si-Ag alloy and (Cu+Ag)-addition Al-1.0 mass% Mg2Si alloy (Al –Mg –Si-Cu-Ag alloy) has been investigated by hardness test and TEM observation. The Al-Mg-Si-Cu-Ag alloy has the fastest age-hardening rate in the early aging period and the finest microstructure at the peak hardness among three alloys. Therefore the microstructure of the precipitate in Al–Mg–Si-Cu-Ag alloy has been investigated by HRTEM observation to understand the effect of Cu and Ag addition on aging precipitation.


2018 ◽  
Vol 941 ◽  
pp. 961-966
Author(s):  
Shang Zhu ◽  
Zhi Hui Li ◽  
Li Zhen Yan ◽  
Xi Wu Li ◽  
Shu Hui Huang ◽  
...  

A Zn-added Al-Mg-Si-Cu alloy during aging at 170 °C up to 34 h exhibits an interesting age-hardening effect. Small clusters, enriched in Mg and Si, are present in the sample after 0.25 h aging. The β′′ phase is dominant with the peak hardness of 135 HV after aging of 8 h. A decrease in hardness of the alloy occurs with the aging time increasing to 34 h, due to the coarsening of β′′ phase. It is also found that the Cu-containing L phase co-exists with the β′′ phase at this aging condition. The quantitative solute concentrations of the matrix show that the formation of clusters is consistent with the slight lower contents of Mg, Si and Cu compared with the alloy chemical composition, and the present of β′′ and L phase is associated with the further partitioning of Mg, Si and Cu from the Al matrix into the precipitates. No Zn-rich clusters and precipitates are observed and the Zn concentration in matrix has no significant change during aging for up to 34 h. This result means that the major of Zn remains in the matrix as aging continues.


2014 ◽  
Vol 794-796 ◽  
pp. 992-995
Author(s):  
Akihiro Kawai ◽  
Keisuke Matsuura ◽  
Katsumi Watanabe ◽  
Kenji Matsuda ◽  
Susumu Ikeno

It is known that Al-Mg-Ge alloys show a similar precipitation sequence to that of Al-Mg-Si alloys, and that ther equilibrium phase is β-Mg2Ge according to the phase diagram. In this study, the precipitation sequence and age-hardening behavior of Al-1.0mass%Mg2Ge alloys has been investigated by hardness test, write out in full first time used TEM and HRTEM observations on.The hardness curves showed no big difference between peak values hardness for samples aged at 423, 473 and 523K. The precipitates in the peak-aged samples have been classified as some metastable phases, such as the β’-phase and parallelogram-type precipitates by HRTEM observation. The large precipitates are similar to the A-type precipitate in the Al-Mg-Si alloy with excess Si.


2006 ◽  
Vol 56 (11) ◽  
pp. 673-679 ◽  
Author(s):  
Shoichi HIROSAWA ◽  
Tomoya OMURA ◽  
Tatsuo SATO ◽  
Yoshikazu SUZUKI

2014 ◽  
Vol 794-796 ◽  
pp. 981-984
Author(s):  
Masaya Nishikubo ◽  
Kenji Matsuda ◽  
Yoshihisa Oe ◽  
Jyunya Nakamura ◽  
Susumu Ikeno

In this study, the aging behaviour of several Al-Mg-Si alloys (Al-Mg-Si-Cu , Al-Mg-Si-Ag and Al-Mg-Si-Cu-Ag) has been investigated by hardness tests and TEM observations. Comparing the age-hardening rate in the early period of these alloys, the alloys with Cu or/and Ag addition are faster than that of the base alloy, and the aging time to reach the maximum hardness of the alloys with Cu or/and Ag addition is shorter than that of the base alloy.Therefore the aging behaviour of that alloys has been investigated by TEM observations to understand the effect of Cu, Ag and Cu+Ag additions on aging precipitation.


2020 ◽  
Vol 833 ◽  
pp. 74-79
Author(s):  
Inas M. Jauhari ◽  
Danny Taufik Bahar ◽  
Syarah Khayrun Nisa ◽  
Bondan Tiara Sofyan

The effects of Cu addition of 0.38, 3.82, and 6 wt. % in Al-7Si-4Mg alloy on hardness and age hardening response were discussed. Samples were solution treated at 495 °C for 2 h, quenched, and aged at 130 °C for 0 to 498 h. Characterization included hardness test, microstructural observation by an optical microscope (OM) and Scanning Electron Microscope (SEM) combined with Energy Dispersive X-Rays Spectroscopy (EDX), as well as Simultaneous Thermal Analysis (STA) testing. The results showed an increased in as-cast hardness along with addition of Cu. Peak hardness increased to 64.47, 65.8, and 70.1 HRB by addition of 0.38, 3.82, and 6 wt. % Cu, respectively. The addition of Cu promoted the formation of Al2Cu and Al5Cu2Mg8Si6 which contributed to higher as-cast hardness. Formation of GP-zone, θ”, and θ’ was observed after ageing at 48, 240, and 290 °C, respectively and no effects of Cu was detected on the formation temperatures of the precipitates.


2011 ◽  
Vol 409 ◽  
pp. 63-66
Author(s):  
Tomoatsu Murakami ◽  
Kenji Matsuda ◽  
Takeshi Nagai ◽  
Junya Nakamura ◽  
Tokimasa Kawabata ◽  
...  

It is known that Al-Mg-Ge alloy shows the similar precipitation sequence to Al-Mg-Si alloy, and its equilibrium phase is β-Mg2Ge according to its phase diagram. In this study, the precipitation sequence of Al-Mg-Ge alloys containing different contents of Mg2Ge has been investigated by hardness test, TEM and HRTEM observation to understand the effect of Mg2Ge contents on age-hardening behavior of the alloys. The hardness of as-quenched and peak-aged samples have been improved by increasing Mg2Ge contents. The precipitates in the peak-aged samples have been classified into some metastable phases, such as the β’-phase and parallelogram-type precipitate by HRTEM observation. The relative frequency of these precipitates in the is has been changed with Mg2Ge contents.


Author(s):  
Xuanliang Chen ◽  
Daehan Kim ◽  
Minho O ◽  
Calin D. Marioara ◽  
Sigmund J. Andersen ◽  
...  
Keyword(s):  

2018 ◽  
Vol 186 ◽  
pp. 02009
Author(s):  
Dwi Ayu Nurcahyaningsih ◽  
Risly Wijanarko ◽  
Irene Angela ◽  
Bondan Tiara Sofyan

This research focused on investigating the effects of Ti addition on the age hardening response of Al 7xxx alloy for Organic Rankine Cycle (ORC) turbine impeller application in power plant generators. Al-10Zn-6Mg wt. % alloys were produced by squeeze casting with 0.02, 0.05, and 0.25 wt. % Ti addition. As-cast samples were homogenized at 400 °C for 4 h. Solution treatment was conducted at 440 °C for 1 h, followed by quenching and ageing at 130 °C for 200 h. Age hardening result was observed using Rockwell B hardness measurement. Other characterizations included impact testing, STA, optical microscopy, and SEM-EDS. Results showed that the addition of Ti in all content variations increased the as-cast hardness due to the diminution of secondary dendrite arm spacing (SDAS) values of the alloy. Ageing at 130 °C strengthened the alloys, however the addition of Ti was not found to affect neither peak hardness nor impact values of the alloy. Identities of second phases formed during solidification were found to be T (Mg32(Al,Zn)49), β (Al8Mg5), and TiAl3, while precipitates produced during ageing were GP Zone, η′, and η (MgZn2).


2006 ◽  
Vol 519-521 ◽  
pp. 555-560 ◽  
Author(s):  
Peter V. Liddicoat ◽  
Tomoyuki Honma ◽  
L.T. Stephenson ◽  
Simon P. Ringer

During age-hardening of certain Al-Zn-Mg-Cu alloys, a 90% hardness increase can occur with 75 seconds. The clustering and precipitation of solute element species during this early rapid hardening (RH) period has been investigated through atom probe tomography, transmission electron microscopy, and Vickers hardness measurements. This study has focussed on the effect of copper by analysing three alloys; Al-2.0Zn-1.8Mg-0.7Cu, Al-2.0Zn-1.7Mg-0.2Cu and Al-1.9Zn-1.7Mg (at.%). The early RH reaction in these alloys accounts for up to 70% of the total hardening (peak hardness minus as-quenched hardness) and takes place during the first 60 seconds of ageing. We report preferred solute-solute interactions in the as-quenched materials. This quenched-in nanostructure acts as a template for subsequent solute clustering, the nature of which we have correlated with ageing.


Sign in / Sign up

Export Citation Format

Share Document