Vegetation restoration and plant roots improve soil infiltration capacity after a severe forest fire in Daxing’anling, northeast China

Author(s):  
L. Wang ◽  
J. Zhang ◽  
Y. Zhaod ◽  
Q. Fu ◽  
T. Li
2019 ◽  
Vol 2 (1) ◽  
pp. 29
Author(s):  
Oktavian Dwi Suhermanto ◽  
Tatag Muttaqin ◽  
Nugroho Tri Waskitho

Forest fires often occur in many islands of indonesia including in Kalimantan, Sumatra, Java, Sulawesi and other regions. These fires can lead to damage for ecosystems, flora and fauna, even ecosystem hydrology. One of the hydrological system that was disturbed is the interception and infiltration. Interception is the ability of trees to retain water rain then rereleased in steam. Infiltration is the process of water absorbing into the soil, infiltration capacity is the soil’s ability of absorbing water per unit of time. This research is to know the rest of the tree's ability to retain water, and knowing the infiltration of ex forest fire area on TAHURA R. Soerjo, Ledug blocks. This research was carried out on 17-23 January 2019 in ex forest fire area on TAHURA R. Soerjo, with an elevation of 1100-1200 masl. In the ex forest fire area there are 2 dominant trees species to do measurements of interception, there are Tutup (Mallotus paniculatus) and Klerek (Sapindus rarak DC). The results of the interception on Klerek tree is 10% and Tutup is 60%.  For the capacity of the infiltration is 27, 6 mm/hour. 


CATENA ◽  
2019 ◽  
Vol 182 ◽  
pp. 104147 ◽  
Author(s):  
Yu Liu ◽  
Zeng Cui ◽  
Ze Huang ◽  
Manuel López-Vicente ◽  
Gao-Lin Wu

2015 ◽  
Vol 26 (3) ◽  
pp. 545-555 ◽  
Author(s):  
Futao Guo ◽  
Guangyu Wang ◽  
John L. Innes ◽  
Xiangqing Ma ◽  
Long Sun ◽  
...  

2018 ◽  
Vol 626 ◽  
pp. 1394-1401 ◽  
Author(s):  
Di Sun ◽  
Hong Yang ◽  
Dexin Guan ◽  
Ming Yang ◽  
Jiabing Wu ◽  
...  

2021 ◽  
Vol 331 ◽  
pp. 08002
Author(s):  
Rusli HAR ◽  
Aprisal ◽  
Werry Darta Taifur ◽  
Teguh Haria Aditia Putra

Changes in land use in the Air Dingin watershed (DAS) area in Padang City, Indonesia, lead to a decrease in rainwater infiltration volume to the ground. Some land use in the Latung sub-watershed decrease in infiltration capacity with an increase in surface runoff. This research aims to determine the effect of land-use changes on infiltration capacity and surface runoff. Purposive sampling method was used in this research. The infiltration capacity was measured directly in the field using a double-ring infiltrometer, and the data was processed using the Horton model. The obtained capacity was quantitatively classified using infiltration zoning. Meanwhile, the Hydrologic Engineering Center - Hydrology Modeling System with the Synthetic Unit Hydrograph- Soil Conservation Service -Curve Number method was used to analyze the runoff discharge. The results showed that from the 13 measurement points carried out, the infiltration capacity ranges from 0.082 - 0.70 cm/minute or an average of 0.398 cm/minute, while the rainwater volume is approximately 150,000 m3/hour/km2. Therefore, the soil infiltration capacity in the Latung sub-watershed is in zone VI-B or very low. This condition had an impact on changes in runoff discharge in this area, from 87.84 m3/second in 2010 to 112.8 m3/second in 2020 or a nail of 22.13%. Based on the results, it is concluded that changes in the land led to low soil infiltration capacity, thereby leading to an increase in surface runoff.


Landslides ◽  
2020 ◽  
Vol 17 (11) ◽  
pp. 2631-2641
Author(s):  
Francis K. Rengers ◽  
Luke A. McGuire ◽  
Nina S. Oakley ◽  
Jason W. Kean ◽  
Dennis M. Staley ◽  
...  

Abstract In the semiarid Southwestern USA, wildfires are commonly followed by runoff-generated debris flows because wildfires remove vegetation and ground cover, which reduces soil infiltration capacity and increases soil erodibility. At a study site in Southern California, we initially observed runoff-generated debris flows in the first year following fire. However, at the same site three years after the fire, the mass-wasting response to a long-duration rainstorm with high rainfall intensity peaks was shallow landsliding rather than runoff-generated debris flows. Moreover, the same storm caused landslides on unburned hillslopes as well as on slopes burned 5 years prior to the storm and areas burned by successive wildfires, 10 years and 3 years before the rainstorm. The landslide density was the highest on the hillslopes that had burned 3 years beforehand, and the hillslopes burned 5 years prior to the storm had low landslide densities, similar to unburned areas. We also found that reburning (i.e., two wildfires within the past 10 years) had little influence on landslide density. Our results indicate that landscape susceptibility to shallow landslides might return to that of unburned conditions after as little as 5 years of vegetation recovery. Moreover, most of the landslide activity was on steep, equatorial-facing slopes that receive higher solar radiation and had slower rates of vegetation regrowth, which further implicates vegetation as a controlling factor on post-fire landslide susceptibility. Finally, the total volume of sediment mobilized by the year 3 landslides was much smaller than the year 1 runoff-generated debris flows, and the landslides were orders of magnitude less mobile than the runoff-generated debris flows.


2018 ◽  
Vol 229 ◽  
pp. 04016
Author(s):  
Aprisal ◽  
Bambang Istijono ◽  
Reski Permata Sari

One of the hazards of the erosion is soil infiltration capacity is decreased in the place of occurrence of erosion and increasing the volume of surface flow. It will also lead to the occurrence of the superficiality of the river due to the deposition of materials of soil erosion. These hazards need alternative agrotechnology which could reduce the rate of soil erosion. This research is to know the hazard of soil erosion in the upper watershed of the Aie Limau Kambiang and find out the alternative agrotechnology for reducing the soil erosion. This research was conducted. Soil samples collected was taken in purposive random sampling based on a unit of land. The data were analyzed using the universal soil loss equation. The research results of the largest erosion threat come from the land use of traditional gardens and plant density is low. The highest erosion 151,012.00 ton/ha/year was founded on the plantation blended that have a steep slope over 35% LS value of 9.5. The better of agrotechnology with increasing plant density, that could reduce erosion to 503.40 ton/ha/year. This means that the hazard of soil erosion could be controlled with land management and selected of the better agrotechnology.


2013 ◽  
Vol 838-841 ◽  
pp. 1216-1220 ◽  
Author(s):  
Hu Zhu Zhang ◽  
Hui Min Li ◽  
Gui Fei Wei

In order to study the storage-infiltration effect of rainfall for sunken greenbelt in urban road, its storage-infiltration capacity of rainfall runoff was analyzed based on the rainfall balance equation of urban road in the time interval, and then the computational formulae of storage-infiltration rate was derived. Influence factors on storage-infiltration rate, such as design recurrence interval of rainfall, soil infiltration coefficient, greenbelt rate, and depth of sunken greenbelt, etc. were computed and analyzed by using the derived computational formulae with the rainfall intensity of Changchun city. Results show that: on the same condition, storage-infiltration rate of rainfall for sunken greenbelt in urban road increases linearly with the increase of soil infiltration coefficient, greenbelt rate, and depth of sunken greenbelt, and decreases with the increase of design recurrence interval of rainfall. Sunken greenbelt with depth of 0.05 ~ 0.25m can storage-infiltrate all of the rainfall that falls on the urban road when the greenbelt rate of urban road ranges from 20% to 40%. Eco-design program of sunken greenbelt in urban road is reasonable and feasible, and its storage-infiltration effect of rainfall is remarkable.


2015 ◽  
pp. 31-41 ◽  
Author(s):  
Yu. P. Sukhanovskii ◽  
V. A. Vitovtov ◽  
A. V. Prushchik ◽  
Yu. A. Solov`eva ◽  
S. I. Sanzharova

Sign in / Sign up

Export Citation Format

Share Document