Storage-Infiltration Effect of Rainfall for Sunken Greenbelt in Urban Road

2013 ◽  
Vol 838-841 ◽  
pp. 1216-1220 ◽  
Author(s):  
Hu Zhu Zhang ◽  
Hui Min Li ◽  
Gui Fei Wei

In order to study the storage-infiltration effect of rainfall for sunken greenbelt in urban road, its storage-infiltration capacity of rainfall runoff was analyzed based on the rainfall balance equation of urban road in the time interval, and then the computational formulae of storage-infiltration rate was derived. Influence factors on storage-infiltration rate, such as design recurrence interval of rainfall, soil infiltration coefficient, greenbelt rate, and depth of sunken greenbelt, etc. were computed and analyzed by using the derived computational formulae with the rainfall intensity of Changchun city. Results show that: on the same condition, storage-infiltration rate of rainfall for sunken greenbelt in urban road increases linearly with the increase of soil infiltration coefficient, greenbelt rate, and depth of sunken greenbelt, and decreases with the increase of design recurrence interval of rainfall. Sunken greenbelt with depth of 0.05 ~ 0.25m can storage-infiltrate all of the rainfall that falls on the urban road when the greenbelt rate of urban road ranges from 20% to 40%. Eco-design program of sunken greenbelt in urban road is reasonable and feasible, and its storage-infiltration effect of rainfall is remarkable.

Hydrology ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 147
Author(s):  
Matthew C. LaFevor ◽  
Carlos E. Ramos-Scharrón

Concerns over freshwater scarcity for agriculture, ecosystems, and human consumption are driving the construction of infiltration trenches in many mountain protected areas. This study examines the effectiveness of infiltration trenches in a subalpine forested catchment in central Mexico, where public and private organizations have been constructing trenches for ~60 years. We rely on empirical data to develop rainfall-runoff models for two scenarios: a baseline (no trenches) and a trenched scenario. Field measurements of infiltration capacities in forested and trenched soils (n = 56) and two years of meteorological data are integrated into a semi-distributed runoff model of 28 trenched sub-catchments. Sensitivity analysis and hydrographs are used to evaluate differences in total runoff and infiltration between the two scenarios. Multiple logistic regression is used to evaluate the effects of environmental and management variables on the likelihood of runoff response and trench overtopping. The findings show that soil infiltration capacity and rainfall intensity are primary drivers of runoff and trench overtopping. However, trenches provided only a 1.2% increase in total infiltration over the two-year period. This marginal benefit is discussed in relation to the potential adverse environmental impacts of trench construction. Overall, our study finds that as a means of runoff harvesting in these forested catchments, trenches provide negligible infiltration benefits. As a result, this study cautions against further construction of infiltration trenches in forested catchments without careful ex ante assessment of rainfall-runoff relationships. The results of this study have important implications for forest water management in Mexico and elsewhere, where similar earthworks are employed to enhance runoff harvesting and surface water infiltration.


2013 ◽  
Vol 15 (2) ◽  
pp. 81 ◽  
Author(s):  
Latifah Fitria Andriani ◽  
Rully Rahadian ◽  
Mochamad Hadi

Research about the biostarter application on the biopori concept through parameter of soil mesofauna community structure and water infiltration capacity was aimed to investigate the effect of biostarter product on soil mesofauna community structure and water infiltration rate at Lubang Resapan Biopori (LRB) aged 30 days and 50 days, also the correlation between mesofauna community structure and soil infiltration capacity. This study uses a single factor completely randomized design, which has 5 treatments including control, EM4, Bioklin, Mig Dec, and Orgadec. The results showed that the addition of biostarter affects soil mesofauna community structure, particularly positive effect on the abundance of Oribatida and Mesostigmata. Products Orgadec was able to increase faster the abundance of mesofauna both at the age of LRB 30 days and 50 days, whereas Mig Dec and EM4 starting to show its influence on the LRB after 50 days. Infiltration rate LRB age of 30 days showed a significant difference in treatment of Orgadec only, whereas at the age of 50 days, the significant difference is indicated in the treatment EM4​​, Mig Dec and Orgadec. Based on the Spearman correlation test, the total number of individuals and number of Oribatida. Both showed significant positive correlation with the infiltration rate.   Keywords: biostarter, community structure, soil mesofauna, infiltration rate, LR


2011 ◽  
Vol 8 (3) ◽  
pp. 5559-5604 ◽  
Author(s):  
A. Gioia ◽  
V. Iacobellis ◽  
S. Manfreda ◽  
M. Fiorentino

Abstract. Understanding the spatial variability of key parameters of flood probability distributions represents a strategy to provide insights on hydrologic similarity and building probabilistic models able to reduce the uncertainty in flood prediction in ungauged basins. In this work, we exploited the theoretically derived distribution of floods TCIF (Gioia et al., 2008), based on two different threshold mechanisms associated respectively to ordinary and extraordinary events. The model is based on the hypotheses that ordinary floods are generally due to rainfall events exceeding a threshold infiltration rate in a small source area, while the so-called outlier events, responsible of the high skewness of flood distributions, are triggered when severe rainfalls exceed a storage threshold over a large portion of the basin. Within this scheme, a sensitivity analysis was performed in order to analyze the effects of climatic and geomorphologic parameters on the skewness coefficient. In particular, the analysis was conducted investigating the influence on flood distribution of physical factors such as rainfall intensity, soil infiltration capacity, and basin area, in order to provide insights in catchment classification and process conceptualization.


Author(s):  
Barbora Badalíková ◽  
Jaroslava Bartlová

In the years 2008–2012, the infiltration capacity was monitored in the different sites, viz. on the arable land and permanent grassland. In the permanent grassland site the soil was characterised as Leptic Cambisol, loamy sand with the depth of the top layer 0.20 m while on the arable land, it was classified as Eutric Cambisol, sandy loam with the maximum depth of the topsoil humus horizon 0. 40 m. Experimental variants with different doses of incorporated compost were as follows: Variant 1 –without compost incorporation, Variant 2 – compost incorporated in the dose of 80 t.ha−1, Variant 3 – compost incorporated in the dose of 150 t.ha−1. It was found out within the study period that the application of the higher compost doses showed a positive effect on infiltration rate in both localities. In Variant 3, the highest values of the water infiltration were recorded. It can be concluded that the highest dose of compost (150 t.ha−1) improved and accelerated both the infiltration and water holding capacity of soil for a longer period. With the exception of the year 2009, increased values of water infiltration were recorded on experimental plots with arable land than with permanent grassland. It was found also that after five years have not been marked differences between variants. It follows that the regular supply of organic matter is necessary, preferably after three years.


2018 ◽  
Vol 20 (1) ◽  
pp. 1-5
Author(s):  
Totoh Andayono

Majority of Padang City residents inhabitant the region along sea shore for residential, public facility and economic center together with all of supporting facilities. That region is seismic prone area, also potentially affected by tsunami hazard and flood.This circumstances pushed local authority of Padang City to develop urban residential area to the north, east and south side of this city (Koto Tangah, Kuranji, Pauh, Lubuk Kilangan and Bungus Teluk Kabung sub-district), which are used to be water infiltration area. The function`s shifting of this area cause the change of soil density. This condition potentially causethe alteration of rainfall infiltration in to the soil.This research was conducted at 15 locations in Dadok Tunggul Hitam area, Koto Tangah sub-district (9 locations in development area and 6 locations in original area condition). Double Ring Infiltrometer are used in this study to predict infiltration rate and Sandcone for measuring soil density.This study used Horton Model to analyze infiltration rate by quantify infiltration rate data(f), constant infiltration rate (fc) and initial infiltration rate (fo). Moreover, regression analysis were used to quantify infiltration rate in order to determine its effects to soil density parameter.The results show that for high density soil (valuegd = 1,00 gr/cm3 to 1,50 gr/cm3), final soil infiltration rate in average is 0,1 mm/minuteto 0,9 mm/minute. This condition can cause decreasingof rainfall`s runoff infiltration capacity. Meanwhile, for low density of soil (valuegd = 0,30 gr/cm3to 1,00 gr/cm3), the infiltration rate value relatively high with final infiltartion rate reached 0,22 mm/minute. This analysis demonstrated that soil density influence the infiltration rate, where 23,7 % of infiltration capacity in Padang City development area is influenced by soil density parameter (gd), and the rest is influenced by other parameters


2014 ◽  
Vol 638-640 ◽  
pp. 1158-1161
Author(s):  
Hu Zhu Zhang ◽  
Hui Min Li

In order to provide scientific basis for the design parameters’ selection of sunken greenbelt of urban road, computational formulae of critical sunken depth and sunken greenbelt plant’s submergence time were derived based on the storage-infiltration analysis of sunken greenbelt. And then the influence of various factors on the sunken greenbelt design of urban road were computed and analyzed. Results show that: soil infiltration coefficient, design recurrence interval of storm and sunken greenbelt plant’s submergence time are the key influencing factors on the sunken greenbelt design. Under the same condition, critical sunken depth decreases linearly with the increase of soil infiltration coefficient, and increases nonlinearly with the increase of design recurrence interval of storm. Sunken greenbelt plant’s submergence time is proportional to sunken depth of sunken greenbelt, and it is inversely proportional to soil infiltration coefficient. When the value of soil infiltration coefficient is greater than 10-6m/s and the sunken depth range from 0 to 0.25 meters, submergence time of sunken greenbelt plants is all within 70h, and the sunken greenbelt can most infiltrate the rainfall storage in 1d. Considering all the influencing factors, soil infiltration coefficient of sunken greenbelt of urban road should be greater than10-6m/s and the appropriate sunken depth should be range from 0 to 0.25 meters.


Soil Research ◽  
2001 ◽  
Vol 39 (2) ◽  
pp. 239 ◽  
Author(s):  
Yuxia Li ◽  
J. N. Tullberg ◽  
D. M. Freebairn

Wheel traffic can lead to compaction and degradation of soil physical properties. This study, as part of a study of controlled traffic farming, assessed the impact of compaction from wheel traffic on soil that had not been trafficked for 5 years. A tractor of 40 kN rear axle weight was used to apply traffic at varying wheelslip on a clay soil with varying residue cover to simulate effects of traffic typical of grain production operations in the northern Australian grain belt. A rainfall simulator was used to determine infiltration characteristics. Wheel traffic significantly reduced time to ponding, steady infiltration rate, and total infiltration compared with non-wheeled soil, with or without residue cover. Non-wheeled soil had 4—5 times greater steady infiltration rate than wheeled soil, irrespective of residue cover. Wheelslip greater than 10% further reduced steady infiltration rate and total infiltration compared with that measured for self-propulsion wheeling (3% wheelslip) under residue-protected conditions. Where there was no compaction from wheel traffic, residue cover had a greater effect on infiltration capacity, with steady infiltration rate increasing proportionally with residue cover (R 2 = 0.98). Residue cover, however, had much less effect on inf iltration when wheeling was imposed. These results demonstrated that the infiltration rate for the non-wheeled soil under a controlled traffic zero-till system was similar to that of virgin soil. However, when the soil was wheeled by a medium tractor wheel, infiltration rate was reduced to that of long-term cropped soil. These results suggest that wheel traffic, rather than tillage and cropping, might be the major factor governing infiltration. The exclusion of wheel traffic under a controlled traffic farming system, combined with conservation tillage, provides a way to enhance the sustainability of cropping this soil for improved infiltration, increased plant-available water, and reduced runoff-driven soil erosion.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 180
Author(s):  
Laura Ávila-Dávila ◽  
Manuel Soler-Méndez ◽  
Carlos Francisco Bautista-Capetillo ◽  
Julián González-Trinidad ◽  
Hugo Enrique Júnez-Ferreira ◽  
...  

Infiltration estimation is made by tests such as concentric cylinders, which are prone to errors, such as the lateral movement under the ring. Several possibilities have been developed over the last decades to compensate these errors, which are based on physical, electronic, and mathematical principles. In this research, two approaches are proposed to measure the water infiltration rate in a silty loam soil by means of the mass values of a lysimeter weighing under rainfall conditions and different moisture contents. Based on the fact that with the lysimeter it is possible to determine acting soil flows very precisely, then with the help of mass conservation and assuming a downward vertical movement, 12 rain events were analyzed. In addition, it was possible to monitor the behavior of soil moisture and to establish the content at field capacity from the values of the weighing lysimeter, from which both approach are based. The infiltration rate of these events showed a variable rate at the beginning of the rainfall until reaching a maximum, to descend to a stable or basic rate. This basic infiltration rate was 1.49 ± 0.36 mm/h, and this is because soils with fine textures have reported low infiltration capacity. Four empirical or semi-empirical models of infiltration were calibrated with the values obtained with our approaches, showing a better fit with the Horton’s model.


2013 ◽  
Vol 316-317 ◽  
pp. 661-664 ◽  
Author(s):  
Lin Hu Yuan ◽  
Gui Sheng Fan

This paper is based on an item of key problem of agriculture of Shanxi province through field test and indoor test. Capability of soil infiltration and soil moisture content,soil volume-weight,content of soil organic matter,soil structure were measured.Infiltration content and infiltration rate reflect the capability of soil infiltration. Ten points of Yumenkou irriqated area located in Hejin, Jishan,Xinjiang were choosed,which can represent the soil feature of this area very well.The study of soil infiltration will give the scientific reason for the rational determining of field irrigation technique parameter.


Sign in / Sign up

Export Citation Format

Share Document