14. Mapping, Curation, and Evolutionary Conservation of Macaque miRNA

Author(s):  
Mareena Mallory

  MicroRNAs (miRNAs) are small regulatory RNA molecules that switch off gene expression. Their main function is to degrade or stop the translation of target messenger RNAs through binding to their 3’ untranslated regions. miRNAs are excellent disease biomarkers due to their cell-type specificity, abundance, and stability. However, the sequences and locations of miRNAs within the human genome are a source of confusion in miRNA diagnostics. Here, I am defining the genomic locations and examining the specificity of miRNA expression in the Rhesus macaque tissues, using evolutionary conservation to guide our understanding of miRNA biology. First, I mapped the human miRNA precursor sequences in the macaque genome through the UCSC Genome Browser. Next, I expect to assess the validity of a miRNA by aligning macaque small RNA sequences against their corresponding precursor sequences. Lastly, I will calculate miRNA tissue specificity using existing data generated from 65 tissues obtained during a macaque necropsy. Through this approach, I expect to generate miRNA expression profiles using matching human miRNA expression profiles. These profiles were preprocessed through data normalization, outlier removal, and filtering of low expressed miRNAs. Feature selection and tissue specificity measures will be used to identify tissue-specific miRNA and an atlas of miRNA expression will be generated. miRNA conservation between humans and macaques will be assessed and macaque segments that did not align with the human genome will be investigated separately as they may be new miRNA.

Author(s):  
Jocelyn M Cuthbert ◽  
Stewart J Russell ◽  
Irina A Polejaeva ◽  
Qinggang Meng ◽  
Kenneth L White ◽  
...  

Abstract Production of embryos with high developmental competence by somatic cell nuclear transfer (scNT) is far less efficient than for in vitro fertilized (IVF) embryos, likely due to an accumulation of errors in genome reprogramming that results in aberrant expression of RNA transcripts, including messenger RNAs (mRNA) and, possibly, microRNAs (miRNA). Thus, our objectives were to use RNAseq to determine the dynamics of mRNA expression in early developing scNT and IVF embryos in the context of the maternal-to-embryonic transition (MET) and to correlate apparent transcriptional dysregulation in cloned embryos with miRNA expression profiles. Comparisons between scNT and IVF embryos indicated large scale transcriptome differences, which were most evident at the 8-cell and morula stages for genes associated with biological functions critical for the MET. For two miRNAs previously identified as differentially expressed in scNT morulae, miR-34a and miR-345, negative correlations with some predicted mRNA targets were apparent, though not widespread among the majority of predicted targets. Moreover, although large-scale aberrations in expression of mRNAs were evident during the MET in cattle scNT embryos, these changes were not consistently correlated with aberrations in miRNA expression at the same developmental stage, suggesting that other mechanisms controlling gene expression may be involved.


2020 ◽  
Vol 21 (7) ◽  
pp. 722-734
Author(s):  
Adele Soltani ◽  
Arefeh Jafarian ◽  
Abdolamir Allameh

micro (mi)-RNAs are vital regulators of multiple processes including insulin signaling pathways and glucose metabolism. Pancreatic β-cells function is dependent on some miRNAs and their target mRNA, which together form a complex regulative network. Several miRNAs are known to be directly involved in β-cells functions such as insulin expression and secretion. These small RNAs may also play significant roles in the fate of β-cells such as proliferation, differentiation, survival and apoptosis. Among the miRNAs, miR-7, miR-9, miR-375, miR-130 and miR-124 are of particular interest due to being highly expressed in these cells. Under diabetic conditions, although no specific miRNA profile has been noticed, the expression of some miRNAs and their target mRNAs are altered by posttranscriptional mechanisms, exerting diverse signs in the pathobiology of various diabetic complications. The aim of this review article is to discuss miRNAs involved in the process of stem cells differentiation into β-cells, resulting in enhanced β-cell functions with respect to diabetic disorders. This paper will also look into the impact of miRNA expression patterns on in vitro proliferation and differentiation of β-cells. The efficacy of the computational genomics and biochemical analysis to link the changes in miRNA expression profiles of stem cell-derived β-cells to therapeutically relevant outputs will be discussed as well.


Author(s):  
Michela Bulfoni ◽  
Riccardo Pravisani ◽  
Emiliano Dalla ◽  
Daniela Cesselli ◽  
Masaaki Hidaka ◽  
...  

Author(s):  
Wenhui Huang ◽  
Xuefeng Gu ◽  
Yingying Wang ◽  
Yuhan Bi ◽  
Yu. Yang ◽  
...  

2017 ◽  
Vol 50 (1) ◽  
Author(s):  
Guankui Du ◽  
Man Xiao ◽  
Xuezi Zhang ◽  
Maoyu Wen ◽  
Chi Pang ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 4789
Author(s):  
Shintaro Fujihara ◽  
Hideki Kobara ◽  
Noriko Nishiyama ◽  
Kayo Hirose ◽  
Hisakazu Iwama ◽  
...  

Esophageal squamous cell carcinoma (ESCC) has a poor prognosis when diagnosed at an advanced stage, and early detection and treatment are essential to improve survival. However, intraobserver and interobserver variation make the diagnosis of superficial ESCC difficult, and suitable biomarkers are urgently needed. Here, we compared the microRNA (miRNA) expression profiles of superficial ESCC tissues and adjacent normal tissues obtained immediately before esophageal endoscopic submucosal dissection. We found that ESCC and normal tissues differed in their miRNA expression profiles. In particular, miR-21-5p and miR-146b-5p were significantly upregulated and miR-210-3p was significantly downregulated in tumor tissues compared with normal tissues. We also detected significant associations between miRNA expression and ESCC invasion depth and lymphovascular invasion. The same differential expression of miR-21-5p, miR-146b-5p, and miR-210-3p was detected in ESCC cell lines compared with normal esophageal epithelial cells in vitro. However, transfection of ESCC cells with miR-210-3p and miR-21-5p mimics or inhibitors had partial effects on cell proliferation and invasion in vitro. These results indicate that miRNA expression is significantly deregulated in superficial ESCC, and suggest that the potential contribution of differentially expressed miRNAs to the malignant phenotype should be further investigated.


Sign in / Sign up

Export Citation Format

Share Document