The Synthesis of Pharmaceuticals: The Effective Application of Secondary Boronic Esters in Enantioselective Suzuki ‐ Miyaura Cross ‐ Coupling Reactions

Author(s):  
Jonathon Moir

Pharmaceuticals and drugs have become an indispensable part of human life. Presently, a myriad of different drugs are available for a variety of mental and physical health concersn. The synthesis of these drugs, however, remains an elusive and often difficult aspect of the industry. The importance of chirality, or "handedness", in the synthesis of natural products is paramount, as any given pair of enantiomers can have widely differing physiological effects. As such, the ability to control the enantioselectivity of a reaction is of the utmost importance. One example of a facile method used to form carbon-carbon bonds is the Suzuki-Miyaura cross-coupling reaction. Not only is this reaction effective at coupling primary organoboronic esters with organohalides, but recent work in the Crudden group in the Department of Chemistry has revealed an effective method of also cross-couplingchiral secondary organoboronic esters with good retention of stereochemistry. This work, the first of its kind, is crucial in developing single-handed natural products for a wide array of applications, including applications in the pharmaceutical industry. The end result is safer and more effective drugs for distribution to the general public. To expand the scope of this project, new substrates are currently being synthesized for cross-coupling applications. The overall goal is to improve upon current methodologies, while helping to meet the industrial and academic needs of the future.  

2020 ◽  
Author(s):  
Chet Tyrol ◽  
Nang Yone ◽  
Connor Gallin ◽  
Jeffery Byers

By using an iron-based catalyst, access to enantioenriched 1,1-diarylakanes was enabled through an enantioselective Suzuki-Miyaura crosscoupling reaction. The combination of a chiral cyanobis(oxazoline) ligand framework and 1,3,5-trimethoxybenzene additive were essential to afford high yields and enantioselectivities in cross-coupling reactions between unactivated aryl boronic esters and a variety of benzylic chlorides, including challenging ortho-substituted benzylic chloride substrates. Mechanistic investigations implicate a stereoconvergent pathway involving carbon-centered radical intermediates.


2020 ◽  
Author(s):  
Chet Tyrol ◽  
Nang Yone ◽  
Connor Gallin ◽  
Jeffery Byers

By using an iron-based catalyst, access to enantioenriched 1,1-diarylakanes was enabled through an enantioselective Suzuki-Miyaura crosscoupling reaction. The combination of a chiral cyanobis(oxazoline) ligand framework and 1,3,5-trimethoxybenzene additive were essential to afford high yields and enantioselectivities in cross-coupling reactions between unactivated aryl boronic esters and a variety of benzylic chlorides, including challenging ortho-substituted benzylic chloride substrates. Mechanistic investigations implicate a stereoconvergent pathway involving carbon-centered radical intermediates.


Synthesis ◽  
2020 ◽  
Vol 52 (16) ◽  
pp. 2387-2394 ◽  
Author(s):  
Jorge A. Cabezas ◽  
Natasha Ferllini

A regiospecific palladium-catalyzed cross-coupling reaction using the operational equivalent of the dianion 1,3-dilithiopropyne, with aromatic iodides is reported. This reaction gives high yields of 1-propyn-1-yl-benzenes and 2-(propyn-1-yl)thiophenes in the presence of catalytic amounts of palladium(0) or (II) and stoichiometric amounts of copper iodide. No terminal alkyne or allene isomers were detected. Reaction conditions were very mild and several functional groups were tolerated.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 652 ◽  
Author(s):  
Monika Olesiejuk ◽  
Agnieszka Kudelko ◽  
Marcin Swiatkowski ◽  
Rafal Kruszynski

New derivatives of 4-alkyl-3,5-diaryl-4H-1,2,4-triazole were synthesized utilizing the Suzuki cross-coupling reaction. The presented methodology comprises of the preparation of bromine-containing 4-alkyl-4H-1,2,4-triazoles and their coupling with different commercially available boronic acids in the presence of ionic liquids or in conventional solvents. The obtained compounds were tested for their luminescence properties.


2017 ◽  
Vol 15 (27) ◽  
pp. 5805-5810 ◽  
Author(s):  
Yan Liu ◽  
Jia Yuan ◽  
Zi-Fei Wang ◽  
Si-Hao Zeng ◽  
Meng-Yue Gao ◽  
...  

An efficient solvent-free and aqueous protocol for the Buchwald–Hartwig cross-coupling reaction has been developed. Notably, the catalytic system also efficiently catalyzed the reaction under aqueous conditions.


2018 ◽  
Vol 16 (43) ◽  
pp. 8106-8114 ◽  
Author(s):  
Joffrey Pijeat ◽  
Yannick J. Dappe ◽  
Pierre Thuéry ◽  
Stéphane Campidelli

A tetra-bromoanthracenylporphyrin was synthesised and its reactivity was tested by post-synthetic modification using the Suzuki–Miyaura cross coupling reaction.


RSC Advances ◽  
2016 ◽  
Vol 6 (111) ◽  
pp. 109296-109300 ◽  
Author(s):  
Xian Wang ◽  
Zhenhua Wang ◽  
Zunyuan Xie ◽  
Guofang Zhang ◽  
Weiqiang Zhang ◽  
...  

1,3-Yones as σ-, π-electron donating ligands significantly accelerated the cross-coupling reactions of aryl iodides with terminal alkynes, in which as low as 0.1 to 1 mol% of CuI were efficiently activated.


2020 ◽  
Author(s):  
Jian Luo ◽  
Bo Hu ◽  
wenda wu ◽  
maowei hu ◽  
Tianbiao Liu

Nickel (Ni) catalyzed carbon-carbon (C−C) cross-coupling has been considerably developed in last decades and has demonstrated unique reactivities compared to palladium. However, existing Ni catalyzed cross-coupling reactions, despite success in organic synthesis, are still subject to the use of air-sensitive nucleophiles (i.e. Grignard and organozinc reagents), or catalysts (i.e. Ni<sup>0</sup> pre-catalysts), significantly limiting their academic and industrial adoption. Herein, we report that, through electrochemical voltammetry screening and optimization, the redox neutral C(sp<sup>2</sup>)‒C(sp<sup>3</sup>) cross-coupling can be accomplished in an undivided cell configuration using bench-stable aryl halide or β-bromostyrene (electrophiles) and benzylic trifluoroborate (nucleophiles) reactants, non-precious, bench stable catalysts consisting of NiCl<sub>2</sub>•glyme pre-catalyst and polypyridine ligands under ambient conditions. The broad reaction scope and good yields of the Ni-catalyzed electrochemical coupling reaction were confirmed by 48 examples of aryl/β-styrenyl chloride/bromide and benzylic trifluoroborates. Its potential applications were demonstrated by late-stage functionalization of pharmaceuticals and natural amino acid modification. Furthermore, this electrochemical C−C cross-coupling reaction was demonstrated at gram-scale in a flow-cell electrolyzer for practical industrial adoption. Finally, an array of chemical and electrochemical studies mechanistically indicates that electrochemical C−C cross-coupling reaction proceeds through an unconventional radical trans-metalation mechanism.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5506
Author(s):  
Marta A. Andrade ◽  
Luísa M. D. R. S. Martins

The ever-growing interest in the cross-coupling reaction and its applications has increased exponentially in the last decade, owing to its efficiency and effectiveness. Transition metal-mediated cross-couplings reactions, such as Suzuki–Miyaura, Sonogashira, Heck, and others, are powerful tools for carbon–carbon bond formations and have become truly fundamental routes in catalysis, among other fields. Various greener strategies have emerged in recent years, given the widespread popularity of these important reactions. The present review comprises literature from 2015 onward covering the implementation of unconventional methodologies in carbon–carbon (C–C) cross-coupling reactions that embodies a variety of strategies, from the use of alternative energy sources to solvent- free and green media protocols.


Synthesis ◽  
2018 ◽  
Vol 50 (09) ◽  
pp. 1883-1890 ◽  
Author(s):  
Margus Lopp ◽  
Eleana Lopušanskaja ◽  
Anne Paju ◽  
Ivar Järving

A method for the synthesis of cyclic 3-aryl- and heteroaryl-substituted 1,2-dicarbonyl compounds with different ring sizes by using a Suzuki cross-coupling reaction between 3-halo-1,2-dicarbonyl compounds and arylboronic acids is developed. The 3-halo-1,2-dicarbonyl substrates are easily available from 1,2-dicarbonyl compounds. The method is versatile, affording good to high yields of the target compounds.


Sign in / Sign up

Export Citation Format

Share Document