scholarly journals Leveraging Escape Room Popularity to Provide First-Year Students with an Introduction to Engineering Information

Author(s):  
Benjamin Walsh ◽  
Michelle Spence

Incoming first-year engineering students at the University of Toronto often have difficulty navigating the library and its resources. Orientation activities at the Engineering & Computer Science Library are designed to introduce students to the library in an informal and entertaining way. In 2017, as a result of dropping interest in previous years' orientation activities, librarians at the Engineering & Computer Science Library collaborated with instructors and staff in the Faculty of Applied Science and Engineering to develop an orientation activity grounded in curriculum and based on the popular escape room game. Core library services and engineering resources were used to build a challenging program that introduced students to basic, but essential, research skills. Voluntary student participation in the game exceeded previous years' participation and all expectations of the game designers.

Author(s):  
Shai Cohen ◽  
Micah Stickel

One of the great advantages of developing online courses is that it enables the institution to reimagine how they can deliver that content to their students. In recent years, the Faculty of Applied Science and Engineering at the University of Toronto has worked to develop a set of first year calculus courses in an online format. These courses were designed specifically for engineering students to: (a) situate the material in an engineering context through multiple real-world examples and “on-site” videos, (b) place an increased emphasis on the form of the solution, and (c) incorporate a significant experience in mathematical modeling through a self-defined project.In July and August of 2014, the Calculus for Engineers I online course was offered to incoming first-year students that were to start in September 2014. The purpose of this paper is to summarize the experiences related to this unique offering from the perspectives of the students as well as the Faculty administration and course instructor.Of the 900 students that were invited to take the course, 170 initially registered for the course in early July, and of those 48 students completed the course at the end of August. Of the 44 students that passed the course, 20 (48%) decided to continue on with the online offering of Calculus for Engineers II in the fall 2014 term.Overall, students were quite positive about their online learning experience and were glad to have the opportunity to complete a credit before their official start. This allowed them to either take an elective in their first year or have a lighter workload in one of the terms.In their course survey comments, they noted that they appreciated the opportunity to learn and review the material at their own pace, the way in which the instructor connected the mathematics to an engineering context, and having an early introduction to the university learning environment.Delivering an online university-level calculus course to incoming first-year students is an exciting and novel way to enhance the engineering student experience in first year. This paper provides an introductory summary of this approach from the students’, instructor’s, and administrators’ perspectives.


Author(s):  
Ken Tallman

The presentation will discuss a third-year engineering elective course, Engineering and Science inthe Arts, offered by the Faculty of Applied Science and Engineering at the University of Toronto. The presentation will detail the unique course deliverables, which require the engineering students to, first, create original works of art, and, secondly, to explain how these works connect to engineering and/or science. A key objective in the course was that the students eradicate the boundaries separating engineers and artists, and this presentation will consider the course’s success in this regard.


Author(s):  
Eric Andersson ◽  
Christopher Dryden ◽  
Chirag Variawa

Machine learning is used to analyze student feedback in first-year engineering courses. This exploratory work builds on previous research at the University of Toronto, where a multi-year investigation used an online survey to collect quantitative and qualitative data from incoming first-year students. [1] (N ~1000)Sentiment analysis, a machine learning method, is used to investigate the relationship between hours of study outside of scheduled instructional hours and qualitative survey feedback sentiment. The results are visualized with chronological sentiment graphs, which contextualize the results in relation to key events during the school year.Large drops in sentiment were seen to occur during weeks with major assessments and deadlines. An inverse correlation between hours spent outside of class and feedback sentiment was also noticed


Author(s):  
Helen Alfaro Viquez ◽  
Jorma Joutsenlahti

The study of mathematics at the university level requires logical thinking and strong mathematical skills. Contemporary first-year students are not prepared for these demands and end up failing their courses. This study aims to present an instrument for enhancing mathematics teaching and promoting learning with understanding in higher education by a combination of symbolic, natural, and pictorial languages in different tasks. We analyze the 17 solutions of four languaging exercises administered in a basic calculus course for engineering students at the University of Costa Rica. The results suggest that these exercises promote the acquisition of skills necessary to be mathematically proficient and are a useful tool for revealing students’ mathematical thinking and misconceptions.


Author(s):  
Carolyn Labun

At the University of British Columbia Okanagan School of Engineering (SOE), first year engineering students take a 3-credit course in Engineering Communication. Designed to replace the traditional 3-credits of English taken by other first year students, APSC 176 introduces students to the fundamentals of engineering communication, with a strong emphasis on written communication. The paper is describes the types of assignments given to first year students, the techniques used to encourage meaningful revision of written assignments, and the methods used to evaluate written assignments. Particular attention will be paid to a two-week first term design project (such as the assignment, supplemental materials including exercises, and marking guidelines). It should be noted that the design is entirely conceptual - students are not required to develop a prototype, but rather to work with a team to develop (and subsequently, explain and market) a concept in response to an RFP.


Author(s):  
Thomas O'Neill

Engineers Canada Accreditation Board lists12 Canadian Engineering Graduate Attributes necessaryfor program accreditation. One of these is the Individualand Team Work attribute. At the University of Calgary anannual survey has been developed to assess studentperceptions of teamwork. The survey examines students’overall satisfaction with teamwork activities, attitudestowards teamwork, perceived emphasis and supportreceived from the department, teamwork skills(competence and importance), and personal support forteamwork initiatives. Based on the responses from pastyears two trends can be identified: students perceive agap between their competence in teamwork skills and theimportance of those skills, and students show high levelsof support for more teamwork initiatives. Following thesetrends three recommendations can be made: teamworkskills development activities for the students, moreopportunities for peer feedback in team projects, andsupport for first year students. By annually administeringassessments engineering departments can evaluate theirsuccess in developing the necessary Individual and TeamWork attribute required by Engineers CanadaAccreditation Board for program accreditation.


2020 ◽  
Author(s):  
Will Cluett ◽  
Peter Weiss ◽  
Kim Woodhouse ◽  
David Bagley ◽  
Susan McCahan

Author(s):  
Vicki Komisar ◽  
Robert Irish ◽  
Jason Foster

 Abstract – At the University of Toronto, Engineering Science students are typically introduced to the engineering codes and standards that they are expected to incorporate into framing and responding to engineering design challenges in their first year of study. In our experience, however, students do not always appreciate that these codes and standards may not reflect the interests of key (and potentially under-represented) stakeholders, and thus may not be appropriate for their engineering context. To encourage our students to adopt a more critical perspective when working with codes and standards, we exposed them to case examples of contentious regulations, and highlighted the objectives, people, and processes behind the development of these works. Our examples focus on common products to which first-year students can relate, such as handrails and stairs. By exposing our students to the people and processes by which codes and standards are developed, and to the controversies associated with contentious policy decisions, we expect that students will adopt a rigorous approach to using engineering codes and standards in their design activities.


Sign in / Sign up

Export Citation Format

Share Document