scholarly journals Factor XI and Factor IX Deficient Mice

1998 ◽  
Vol 9 (3) ◽  
pp. 215-219 ◽  
Author(s):  
Kazuhiko TOMOKIYO ◽  
Jun MIZUGUCHI
Keyword(s):  
Blood ◽  
2010 ◽  
Vol 116 (19) ◽  
pp. 3981-3989 ◽  
Author(s):  
Qiufang Cheng ◽  
Erik I. Tucker ◽  
Meghann S. Pine ◽  
India Sisler ◽  
Anton Matafonov ◽  
...  

AbstractMice lacking factor XII (fXII) or factor XI (fXI) are resistant to experimentally–induced thrombosis, suggesting fXIIa activation of fXI contributes to thrombus formation in vivo. It is not clear whether this reaction has relevance for thrombosis in pri mates. In 2 carotid artery injury models (FeCl3 and Rose Bengal/laser), fXII-deficient mice are more resistant to thrombosis than fXI- or factor IX (fIX)–deficient mice, raising the possibility that fXII and fXI function in distinct pathways. Antibody 14E11 binds fXI from a variety of mammals and interferes with fXI activation by fXIIa in vitro. In mice, 14E11 prevented arterial occlusion induced by FeCl3 to a similar degree to total fXI deficiency. 14E11 also had a modest beneficial effect in a tissue factor–induced pulmonary embolism model, indicating fXI and fXII contribute to thrombus formation even when factor VIIa/tissue factor initiates thrombosis. In baboons, 14E11 reduced platelet-rich thrombus growth in collagen-coated grafts inserted into an arteriovenous shunt. These data support the hypothesis that fXIIa-mediated fXI activation contributes to thrombus formation in rodents and primates. Since fXII deficiency does not impair hemostasis, targeted inhibition of fXI activation by fXIIa may be a useful antithrombotic strategy associated with a low risk of bleeding complications.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. SCI-20-SCI-20
Author(s):  
David Gailani

Abstract Abstract SCI-20 Factor XI (fXI) is the zymogen of an enzyme (fXIa) that contributes to blood coagulation through activation of factor IX (fIX). FXI has structural and mechanistic features that distinguish it from the vitamin K-dependent proteases of coagulation. The protein is a dimer of identical 80 kDa subunits, each containing four apple domains (A1-A4) that form a platform at the base of the trypsin-like protease domain. The apple domains contain binding sites for fIX, platelet receptors, and high molecular weight kininogen. FXI is converted to fXIa by cleavage of a single bond on each subunit, unmasking exosites required for fIX binding. Conversion of fXI to fXIa proceeds through an intermediate with only one activated subunit (1/2-fXIa). 1/2-fXIa, and monomeric forms of fXIa, activate fIX in a manner similar to fully activated fXIa, indicating each subunit functions as a complete enzyme. The importance of the dimeric structure of fXI is not clear at this point. It may facilitate activation, or allow fXIa to bind simultaneously to fIX and a surface (a platelet for example) at a wound site. Congenital fXI deficiency is associated with a variable propensity to bleed excessively after trauma to certain tissues. Symptoms are usually milder than in fIX deficiency (hemophilia B), and many affected individuals are asymptomatic. In the cascade-waterfall model of coagulation, fXI is activated by factor XIIa (fXIIa) during a process called contact activation. However, current models often omit contact activation, because fXII deficiency is not associated with abnormal hemostasis. Thrombin activates fXI, providing an explanation for normal hemostasis in fXII deficiency. In contrast to its modest role in hemostasis, fXI may serve an important role in thromboembolic diseases. High fXI levels are a risk factor for arterial and venous thrombosis in humans; and deficiency or inhibition of fXI confers resistance to thrombosis in animal models. FXI deficient mice are as resistant to arterial thrombosis as fIX deficient mice, or wild type mice treated with a supra-therapeutic dose of heparin. In arterial thrombosis models in mice, rabbits and baboons, lack of fXI activity results in instability of platelet rich thrombi, preventing vessel occlusion. FXI deficiency also prolongs survival and lessens the severity of disseminated intravascular coagulation in a mouse polymicrobial sepsis model. Interestingly, mice with combined deficiencies of fXI and fIX are more resistant to arterial thrombus formation than mice deficient in only one of these proteins, indicating fXIa has proteolytic targets other than fIX. The observation that fXII deficient mice are resistant to arterial thrombosis suggests that activation of fXI by contact activation, while unnecessary for hemostasis, contributes to thrombin generation in some pathologic processes. If the observations in mice apply to thromboembolism in humans, then fXIa and/or fXIIa may be excellent targets for novel antithrombotic strategies. In contrast to drugs such as heparin and warfarin, agents targeting fXIa or fXIIa would likely be associated with relatively few bleeding complications, and could be employed in clinical situations where anticoagulation therapy is currently contraindicated. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 16 (10) ◽  
pp. 2044-2049 ◽  
Author(s):  
B. M. Mohammed ◽  
Q. Cheng ◽  
A. Matafonov ◽  
D. M. Monroe ◽  
J. C. M. Meijers ◽  
...  
Keyword(s):  

1998 ◽  
Vol 80 (08) ◽  
pp. 233-238 ◽  
Author(s):  
K. A. Mitropoulos ◽  
M. N. Nanjee ◽  
D. J. Howarth ◽  
J. C. Martin ◽  
M. P. Esnouf ◽  
...  

SummaryAbetalipoproteinaemia is a rare disorder of apolipoprotein B metabolism associated with extremely low plasma concentrations of triglyce-ride. To discover whether the general positive association between factor VII and triglyceride levels extends to this condition, 5 patients were compared with 18 controls. All patients had a triglyceride below 100 μmol/l. Plasma unesterified fatty acid concentration was normal. Although factor IX activity was only slightly reduced (mean 88% standard) and factor IX antigen was normal, mean activated factor VII in patients was strikingly reduced to 34% of that in controls, a level similar to that found in haemophilia B. The patients’ mean factor VII activity and factor VII antigen were also significantly reduced to 54% and 63% of those in controls, respectively. Mean factor XI activity and tissue factor pathway inhibitor activity were reduced in patients to 70% and 75% of control values respectively, while factor XII, factor XI antigen, factor X, prothrombin and protein C were normal.


Blood ◽  
2010 ◽  
Vol 115 (13) ◽  
pp. 2569-2577 ◽  
Author(s):  
Jonas Emsley ◽  
Paul A. McEwan ◽  
David Gailani

AbstractFactor XI (FXI) is the zymogen of an enzyme (FXIa) that contributes to hemostasis by activating factor IX. Although bleeding associated with FXI deficiency is relatively mild, there has been resurgence of interest in FXI because of studies indicating it makes contributions to thrombosis and other processes associated with dysregulated coagulation. FXI is an unusual dimeric protease, with structural features that distinguish it from vitamin K–dependent coagulation proteases. The recent availability of crystal structures for zymogen FXI and the FXIa catalytic domain have enhanced our understanding of structure-function relationships for this molecule. FXI contains 4 “apple domains” that form a disk structure with extensive interfaces at the base of the catalytic domain. The characterization of the apple disk structure, and its relationship to the catalytic domain, have provided new insight into the mechanism of FXI activation, the interaction of FXIa with the substrate factor IX, and the binding of FXI to platelets. Analyses of missense mutations associated with FXI deficiency have provided additional clues to localization of ligand-binding sites on the protein surface. Together, these data will facilitate efforts to understand the physiology and pathology of this unusual protease, and development of therapeutics to treat thrombotic disorders.


2018 ◽  
Vol 118 (02) ◽  
pp. 340-350 ◽  
Author(s):  
Ingrid Stroo ◽  
J. Marquart ◽  
Kamran Bakhtiari ◽  
Tom Plug ◽  
Alexander Meijer ◽  
...  

AbstractCoagulation factor XI is activated by thrombin or factor XIIa resulting in a conformational change that converts the catalytic domain into its active form and exposing exosites for factor IX on the apple domains. Although crystal structures of the zymogen factor XI and the catalytic domain of the protease are available, the structure of the apple domains and hence the interactions with the catalytic domain in factor XIa are unknown. We now used chemical footprinting to identify lysine residue containing regions that undergo a conformational change following activation of factor XI. To this end, we employed tandem mass tag in conjunction with mass spectrometry. Fifty-two unique peptides were identified, covering 37 of the 41 lysine residues present in factor XI. Two identified lysine residues that showed altered flexibility upon activation were mutated to study their contribution in factor XI stability or enzymatic activity. Lys357, part of the connecting loop between A4 and the catalytic domain, was more reactive in factor XIa but mutation of this lysine residue did not impact on factor XIa activity. Lys516 and its possible interactor Glu380 are located in the catalytic domain and are covered by the activation loop of factor XIa. Mutating Glu380 enhanced Arg369 cleavage and thrombin generation in plasma. In conclusion, we have identified novel regions that undergo a conformational change following activation. This information improves knowledge about factor XI and will contribute to development of novel inhibitors or activators for this coagulation protein.


2011 ◽  
Vol 80 (1) ◽  
pp. 91-99 ◽  
Author(s):  
Deyan Luo ◽  
Frank M. Szaba ◽  
Lawrence W. Kummer ◽  
Lawrence L. Johnson ◽  
Erik I. Tucker ◽  
...  

ABSTRACTIn mice infected sublethally withListeria monocytogenes, fibrin is deposited at low levels within hepatic tissue, where it functions protectively by limiting bacterial growth and suppressing hemorrhagic pathology. Here we demonstrate that mice infected with lethal doses ofL. monocytogenesproduce higher levels of fibrin and display evidence of systemic coagulopathy (i.e., thrombocytopenia, fibrinogen depletion, and elevated levels of thrombin-antithrombin complexes). When the hepatic bacterial burden exceeds 1 × 106CFU, levels of hepatic fibrin correlate with the bacterial burden, which also correlates with levels of hepatic mRNA encoding the hemostatic enzyme factor XI (FXI). Gene-targeted FXI-deficient mice show significantly improved survival upon challenge with high doses ofL. monocytogenesand also display reduced levels of hepatic fibrin, decreased evidence of coagulopathy, and diminished cytokine production (interleukin-6 [IL-6] and IL-10). While fibrin limits the bacterial burden during sublethal listeriosis in wild-type mice, FXI-deficient mice display a significantly improved capacity to restrain the bacterial burden during lethal listeriosis despite their reduced fibrin levels. They also show less evidence of hepatic necrosis. In conjunction with suboptimal antibiotic therapy, FXI-specific monoclonal antibody 14E11 improves survival when administered therapeutically to wild-type mice challenged with high doses ofL. monocytogenes.Together, these findings demonstrate the utility of murine listeriosis as a model for dissecting qualitative differences between protective and pathological host responses and reveal novel roles for FXI in exacerbating inflammation and pathogen burden during a lethal bacterial infection.


1978 ◽  
Vol 12 (6) ◽  
pp. 1195-1200
Author(s):  
Gilbert C. White ◽  
Gary J. Kociba ◽  
Henry S. Kingdon
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document