scholarly journals CRISPR/Cas9 Technology and Applications in Plants

Author(s):  
Emine Açar ◽  
Yıldız Aka Kaçar

In order to increase access to nutritious foods around the world, innovative technologies need to be developed and integrated into agricultural production systems. The new plant breeding techniques developed offer many advantages for making modifications in the plant genome. CRSPR/Cas9, one of the genome editing technologies, is an efficient system with high potential that allows the formation of target-oriented mutations in many agricultural products and allows the mutation of new and desired characters to be obtained through breeding programs without the use of foreign genetic elements. In this review, we have summarize the discovery, evalution, functionality, genome editing studies of plants and the strong potentials of CRSPR/Cas9 technology for plant breeding.

2018 ◽  
Vol 2 (95) ◽  
pp. 69-72
Author(s):  
Yu.A. Tarariko ◽  
L.V. Datsko ◽  
M.O. Datsko

The aim of the work is to assess the existing and prospective models for the development of agricultural production in Central Polesie on the basis of economic feasibility and ecological balance. The evaluation of promising agricultural production systems was carried out with the help of simulation modeling of various infrastructure options at the levels of crop and multisectoral specialization of agroecosystems. The agro-resource potential of Central Polesie is better implemented in the rotation with lupine, corn and flax dolguntsem with well-developed infrastructure, including crop, livestock units, grain processing and storage systems, feed, finished products and waste processing in the bioenergetic station. The expected income for the formation of such an infrastructure is almost 8 thousand dollars. / with a payback period of capital investments of 2-3 years.


2021 ◽  
Vol 22 (11) ◽  
pp. 5585
Author(s):  
Sajid Fiaz ◽  
Sunny Ahmar ◽  
Sajjad Saeed ◽  
Aamir Riaz ◽  
Freddy Mora-Poblete ◽  
...  

A world with zero hunger is possible only through a sustainable increase in food production and distribution and the elimination of poverty. Scientific, logistical, and humanitarian approaches must be employed simultaneously to ensure food security, starting with farmers and breeders and extending to policy makers and governments. The current agricultural production system is facing the challenge of sustainably increasing grain quality and yield and enhancing resistance to biotic and abiotic stress under the intensifying pressure of climate change. Under present circumstances, conventional breeding techniques are not sufficient. Innovation in plant breeding is critical in managing agricultural challenges and achieving sustainable crop production. Novel plant breeding techniques, involving a series of developments from genome editing techniques to speed breeding and the integration of omics technology, offer relevant, versatile, cost-effective, and less time-consuming ways of achieving precision in plant breeding. Opportunities to edit agriculturally significant genes now exist as a result of new genome editing techniques. These range from random (physical and chemical mutagens) to non-random meganucleases (MegaN), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein system 9 (CRISPR/Cas9), the CRISPR system from Prevotella and Francisella1 (Cpf1), base editing (BE), and prime editing (PE). Genome editing techniques that promote crop improvement through hybrid seed production, induced apomixis, and resistance to biotic and abiotic stress are prioritized when selecting for genetic gain in a restricted timeframe. The novel CRISPR-associated protein system 9 variants, namely BE and PE, can generate transgene-free plants with more frequency and are therefore being used for knocking out of genes of interest. We provide a comprehensive review of the evolution of genome editing technologies, especially the application of the third-generation genome editing technologies to achieve various plant breeding objectives within the regulatory regimes adopted by various countries. Future development and the optimization of forward and reverse genetics to achieve food security are evaluated.


2014 ◽  
Vol 126 ◽  
pp. 1-2 ◽  
Author(s):  
S. Dogliotti ◽  
D. Rodríguez ◽  
S. López-Ridaura ◽  
P. Tittonell ◽  
W.A.H. Rossing

Author(s):  
John Leake ◽  
Victor Squires ◽  
S Shabala

Soil salinity is emerging as a major threat to the sustainability of modern agricultural production systems and, historically, land and water degradation due to salinity has defeated civilisations whenever the cost of remediation exceeded the benefits. This work discusses the complexity inherent in working with salinity, and the opportunities where salt damaged land and water is viewed as a resource. It takes a wider look at land and waterscapes, seeing them as systems that link damage and repair across time and space to bridge the divide between the main beneficiaries of ecosystem services and the main actors, farmers, and land managers. We first discuss the mechanistic basis of crop reduction by salinity and evolution of ideas about how to shape the plant-soil-water nexus. We then discuss the needs of farmers and other land users required for adequate planning and land management within the constraints of existing policy. Lastly, an approach that provides a new technical and economic tool for the remediation of land in several land use categories is presented. We conclude that a more concerted effort is required to turn payments for ecosystem services into a true market, accepted as such by the land managers, whose agency is essential so the ‘knowledge of what can be done can be transformed into benefits’. Achieving this will require a transformation in the paradigm of how natural resources are managed.


Sign in / Sign up

Export Citation Format

Share Document