scholarly journals Evolution and Application of Genome Editing Techniques for Achieving Food and Nutritional Security

2021 ◽  
Vol 22 (11) ◽  
pp. 5585
Author(s):  
Sajid Fiaz ◽  
Sunny Ahmar ◽  
Sajjad Saeed ◽  
Aamir Riaz ◽  
Freddy Mora-Poblete ◽  
...  

A world with zero hunger is possible only through a sustainable increase in food production and distribution and the elimination of poverty. Scientific, logistical, and humanitarian approaches must be employed simultaneously to ensure food security, starting with farmers and breeders and extending to policy makers and governments. The current agricultural production system is facing the challenge of sustainably increasing grain quality and yield and enhancing resistance to biotic and abiotic stress under the intensifying pressure of climate change. Under present circumstances, conventional breeding techniques are not sufficient. Innovation in plant breeding is critical in managing agricultural challenges and achieving sustainable crop production. Novel plant breeding techniques, involving a series of developments from genome editing techniques to speed breeding and the integration of omics technology, offer relevant, versatile, cost-effective, and less time-consuming ways of achieving precision in plant breeding. Opportunities to edit agriculturally significant genes now exist as a result of new genome editing techniques. These range from random (physical and chemical mutagens) to non-random meganucleases (MegaN), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein system 9 (CRISPR/Cas9), the CRISPR system from Prevotella and Francisella1 (Cpf1), base editing (BE), and prime editing (PE). Genome editing techniques that promote crop improvement through hybrid seed production, induced apomixis, and resistance to biotic and abiotic stress are prioritized when selecting for genetic gain in a restricted timeframe. The novel CRISPR-associated protein system 9 variants, namely BE and PE, can generate transgene-free plants with more frequency and are therefore being used for knocking out of genes of interest. We provide a comprehensive review of the evolution of genome editing technologies, especially the application of the third-generation genome editing technologies to achieve various plant breeding objectives within the regulatory regimes adopted by various countries. Future development and the optimization of forward and reverse genetics to achieve food security are evaluated.

Traditional plant breeding depends on spontaneous and induced mutations available in the crop plants. Such mutations are rare and occur randomly. By contrast, molecular breeding and genome editing are advanced breeding techniques that can enhance the selection process and produce precisely targeted modifications in any crop. Identification of molecular markers, based on SSRs and SNPs, and the availability of high-throughput (HTP) genotyping platforms have accelerated the process of generating dense genetic linkage maps and thereby enhanced application of marker-assisted breeding for crop improvement. Advanced molecular biology techniques that facilitate precise, efficient, and targeted modifications at genomic loci are termed as “genome editing.” The genome editing tools include “zinc-finger nucleases (ZNFs),” “transcription activator-like effector nucleases (TALENs),” oligonucleotide-directed mutagenesis (ODM), and “clustered regularly interspersed short palindromic repeats (CRISPER/Cas) system,” which can be used for targeted gene editing. Concepts of molecular plant breeding and genome editing systems are presented in this chapter.


Author(s):  
Baike Wang ◽  
◽  
Juan Wang ◽  
Shaoyong Huang ◽  
Yaping Tang ◽  
...  

Tremendous progress has been achieved in the field of gene editing in plants, such as with the use of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR). Because of the potential advantages associated with mutant creation and crop germplasm innovation, genome editing technology has been rapidly developed and widely used in crop improvement in recent years. In this review, we aim to document some of the important recent developments and applications of genome-editing tools, especially with respect to gene knock-ins. We introduce the mechanism underlying knock-ins and different outcomes of insertion. We also discuss genome editing tools and methods developed to improve insertion efficiencies. Additionally, we review the recent trends in genetic editing biotechnologies; several strategies are being developed to further improve the efficiency of plant gene knock-ins. Undoubtedly, CRISPR/Cas technology will boost the development of new plant breeding techniques tremendously.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Claire Williams ◽  
Savannah Gleim ◽  
Stuart J. Smyth

Abstract Background The broadness of biotechnology serves to connect different types of modern plant breeding techniques with the potential to improve global food security. However, the topic goes beyond the specific example consumers’ associate with the term—genetic modification. As a result, it is often unclear if consumers really know what they claim to understand and the efforts to clarify the science and reasoning behind the use of these practices is often obscured. Methods Two online surveys of 500 Canadians were conducted in 2017. Results Three-quarters of Canadians have high levels of trust in those who provide information about food, yet two-thirds believe that modern plant breeding technologies are unnatural. Conclusions Canadians lack basic knowledge about modern plant breeding practices and technologies and possess high levels of uncertainty regarding the potential for benefits or externalities to develop from the commercialization of new genome editing plant breeding technologies.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 467 ◽  
Author(s):  
Juhi Chaudhary ◽  
Rupesh Deshmukh ◽  
Humira Sonah

Induced mutagenesis is one of the most efficient tools that has been utilized extensively to create genetic variation as well as for identification of key regulatory genes for economically important traits toward the crop improvement. Mutations can be induced by several techniques such as physical, chemical, and insertional mutagen treatments; however, these methods are not preferred because of cost and tedious process. Nonetheless, with the advancements in next-generation sequencing (NGS) techniques, millions of mutations can be detected in a very short period of time and, therefore, considered as convenient and cost efficient. Furthermore, induced mutagenesis coupled with whole-genome sequencing has provided a robust platform for forward and reverse genetic applications. Moreover, the availability of whole-genome sequence information for large number of crops has enabled target-specific genome editing techniques as a preferable method to engineer desired mutations. The available genome editing approaches such as ZFNs (Zinc Finger Nucleases), transcription activator like effector nucleases (TALENS), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated9 (Cas9) endonuclease have been utilized to perform site-specific mutations in several plant species. In particular, the CRISPR/Cas9 has transformed the genome editing because of its simplicity and robustness, therefore, have been utilized to enhance biotic and abiotic stress resistance. The Special Issue of Plants highlights the efforts by the scientific community utilizing mutagenesis techniques for the identification of novel genes toward crop improvement.


Author(s):  
Nathaniel Schleif ◽  
Shawn M. Kaeppler ◽  
Heidi F. Kaeppler

AbstractPlant breeding relies on the presence of genetic variation, which is generated by a random process of mutagenesis that acts on existing gene pools. This variation is then recombined into new forms at frequencies impacted by the local euchromatin and heterochromatin environment. The result is a genetic lottery where plant breeders face increasingly low odds of generating a “winning” plant genotype. Genome editing tools enable targeted manipulation of the genome, providing a means to increase genetic variation and enhancing the chances for plant breeding success. Editing can be applied in a targeted way, where known genetic variation that improves performance can be directly brought into lines of interest through either deletion or insertion. This empowers approaches that are traditionally difficult such as novel domestication and introgression of wild accessions into a germplasm pool. Furthermore, broader editing-mediated approaches such as recombination enhancement and targeted random mutagenesis bring novel ways of variation creation to the plant breeding toolbox. Continued development and application of plant genome editing tools will be needed to aid in meeting critical global crop improvement needs.


Author(s):  
Silas Obukosia ◽  
Olalekan Akinbo ◽  
Woldeyesus Sinebo ◽  
Moussa Savadogo ◽  
Samuel Timpo ◽  
...  

A new set of breeding techniques, referred to as New Breeding Techniques developed in the last two decades have potential for enhancing improved productivity in crop and animal breeding globally. These include site directed nucleases based genomic editing procedures-CRISPR and Cas associated proteins, Zinc Finger Nucleases, Meganucleases/Homing Endonucleases and Transcription- Activator Like-Effector Nucleases for genome editing and other technologies including- Oligonucleotide-Directed Mutagenesis, Cisgenesis and intragenesis, RNA-Dependent DNA methylation; Transgrafting, Agroinfiltration, Reverse breeding. There are ongoing global debates on whether the processes of and products emerging from these technologies should be regulated as genetically modified organisms or approved as conventional products. Decisions on whether to regulate as GMOs are based both on understanding of the molecular basis of their development and if the GMO intermediate step was used. For example- cisgenesis, can be developed using Agrobacterium tumefaciens methods of transformation, a process used by GMO but if the selection is properly conducted the intermediate GMO elements will be eliminated and the final product will be identical to the conventionally developed crops. Others like Site Directed Nuclease 3 are regulated as GMOs in countries such as United State of America, Canada, European Union, Argentina, Australia. Progress in genome editing research, testing of genome edited bacterial blight resistant rice, development of Guidelines for regulating new breeding techniques or genome editing in Africa is also covered with special reference to South Africa, Kenya and Nigeria. Science- and evidence-based approach to regulation of new breeding techniques among regulators and policy makers should be strongly supported.


2020 ◽  
Vol 21 (13) ◽  
pp. 4792
Author(s):  
Romesh K. Salgotra ◽  
C. Neal Stewart

Advances in molecular biology including genomics, high-throughput sequencing, and genome editing enable increasingly faster and more precise cultivar development. Identifying genes and functional markers (FMs) that are highly associated with plant phenotypic variation is a grand challenge. Functional genomics approaches such as transcriptomics, targeting induced local lesions in genomes (TILLING), homologous recombinant (HR), association mapping, and allele mining are all strategies to identify FMs for breeding goals, such as agronomic traits and biotic and abiotic stress resistance. The advantage of FMs over other markers used in plant breeding is the close genomic association of an FM with a phenotype. Thereby, FMs may facilitate the direct selection of genes associated with phenotypic traits, which serves to increase selection efficiencies to develop varieties. Herein, we review the latest methods in FM development and how FMs are being used in precision breeding for agronomic and quality traits as well as in breeding for biotic and abiotic stress resistance using marker assisted selection (MAS) methods. In summary, this article describes the use of FMs in breeding for development of elite crop cultivars to enhance global food security goals.


2020 ◽  
Vol 21 (16) ◽  
pp. 5665 ◽  
Author(s):  
Sunny Ahmar ◽  
Sumbul Saeed ◽  
Muhammad Hafeez Ullah Khan ◽  
Shahid Ullah Khan ◽  
Freddy Mora-Poblete ◽  
...  

Genome editing is a relevant, versatile, and preferred tool for crop improvement, as well as for functional genomics. In this review, we summarize the advances in gene-editing techniques, such as zinc-finger nucleases (ZFNs), transcription activator-like (TAL) effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) associated with the Cas9 and Cpf1 proteins. These tools support great opportunities for the future development of plant science and rapid remodeling of crops. Furthermore, we discuss the brief history of each tool and provide their comparison and different applications. Among the various genome-editing tools, CRISPR has become the most popular; hence, it is discussed in the greatest detail. CRISPR has helped clarify the genomic structure and its role in plants: For example, the transcriptional control of Cas9 and Cpf1, genetic locus monitoring, the mechanism and control of promoter activity, and the alteration and detection of epigenetic behavior between single-nucleotide polymorphisms (SNPs) investigated based on genetic traits and related genome-wide studies. The present review describes how CRISPR/Cas9 systems can play a valuable role in the characterization of the genomic rearrangement and plant gene functions, as well as the improvement of the important traits of field crops with the greatest precision. In addition, the speed editing strategy of gene-family members was introduced to accelerate the applications of gene-editing systems to crop improvement. For this, the CRISPR technology has a valuable advantage that particularly holds the scientist’s mind, as it allows genome editing in multiple biological systems.


Sign in / Sign up

Export Citation Format

Share Document