Transmission line models for high-speed conventional interconnects and metallic carbon nanotube interconnects

Author(s):  
A.G. Chiariello ◽  
A. Maffucci ◽  
G. Miano ◽  
F. Villone
2018 ◽  
Vol 24 (8) ◽  
pp. 5778-5784
Author(s):  
P. Uma Sathyakam ◽  
Paridhi Singh ◽  
Priyamanga Bhardwaj ◽  
P. S Mallick

This paper proposes novel triangular cross sectioned geometry of carbon nanotube (CNT) bundles for crosstalk and hence, delay reduction in CNT bundle interconnects for VLSI circuits. We formulate the equivalent single conductor (ESC) transmission line models of the interconnects and show that the coupling capacitance of triangular bundle is 29% lesser than the traditionally used square bundles of carbon nanotube interconnects. We further simulate the proposed ESC models of capacitively coupled CNT bundle interconnects using Smart SPICE and find that the crosstalk induced delay of triangular interconnects is 30% lesser as compared to square bundle interconnects. The reduction in delay is found to increase as the number of CNTs increase in the bundle. From these results, we suggest that triangle cross-sectioned CNT bundles are the most suitable candidates as global interconnects.


2019 ◽  
Vol 29 (06) ◽  
pp. 2050094 ◽  
Author(s):  
P. Uma Sathyakam ◽  
P. S. Mallick ◽  
Paridhi Singh

This paper proposes novel triangular cross-sectioned geometry of carbon nanotube (CNT) bundles for crosstalk and delay reduction in CNT bundle interconnects for VLSI circuits. First, we formulate the equivalent single conductor (ESC) transmission line models of the interconnects. Through SPICE analysis of the ESC circuits, we find the propagation delays of the proposed CNT bundles. Next, we model the capacitively coupled interconnects for crosstalk analysis. It is found that the coupling capacitance of triangular CNT bundle is 29% lesser than the traditionally used square CNT bundles. Further, the crosstalk-induced delay of triangular interconnects is found to be 30% lesser when compared to square bundle interconnects. The reduction in delay is found to increase as the number of CNTs in the bundle increases. So, we suggest that triangular CNT bundles are the most suitable candidates as global interconnects.


1994 ◽  
Vol 23 (1) ◽  
pp. 39-43
Author(s):  
B. Lakshmi ◽  
K. R. Suresh Nair ◽  
Y. G. K. Patro ◽  
B. M. Arora

1999 ◽  
Vol 121 (4) ◽  
pp. 606-611 ◽  
Author(s):  
Petter Krus

Dynamic simulation of systems, where the differential equations of the system are solved numerically, is a very important tool for analysis of the detailed behavior of a system. The main problem when dealing with large complex systems is that most simulation packages rely on centralized integration algorithms. For large scale systems, however, it is an advantage if the system can be partitioned in such a way that the parts can be evaluated with only a minimum of interaction. Using transmission line models, with distributed parameters, physically motivated pure time delays are introduced in the communication between components. These models can be used to represent both lines in a hydraulic system and springs in mechanical systems. As a result, components and subsystems can be simulated more independently of each other. In this paper it is shown how flexible joints based on transmission line modeling (TLM) with distributed parameters can be used to simplify modeling of large mechanical link systems interconnected with other physical domains. Furthermore, it provides a straightforward formulation for parallel processing.


2017 ◽  
Vol 12 (02) ◽  
pp. C02002-C02002
Author(s):  
R. Bates ◽  
C. Buttar ◽  
J. Buytaert ◽  
L. Eklund ◽  
L.F.S. de Acedo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document