scholarly journals The three-dimensional Cauchy-condition surface method to reconstruct the last closed magnetic surface in non-axisymmetric fusion plasma

Author(s):  
M. Itagaki ◽  
K. Watanabe
2011 ◽  
Vol 53 (10) ◽  
pp. 105007 ◽  
Author(s):  
Masafumi Itagaki ◽  
Tadaaki Maeda ◽  
Takeshi Ishimaru ◽  
Gaku Okubo ◽  
Kiyomasa Watanabe ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1043 ◽  
Author(s):  
Amin Razeghiyadaki ◽  
Dichuan Zhang ◽  
Dongming Wei ◽  
Asma Perveen

A coupled surface response optimization method with a three-dimensional finite volume method is adopted in this study to identify five independent geometric variables of the die interior that provides a design with the lowest velocity variance at the exit of the coat-hanger extrusion die. Two of these five geometric variables represent the manifold dimension while the other three variables represent the die profile. In this method, B-spline fitting with four points was used to represent the die profile. A comparison of the optimized die obtained in our study and the die with a geometry derived by a previous theoretical work shows a 20.07% improvement in the velocity distribution at the exit of the die.


2014 ◽  
Vol 21 (4) ◽  
pp. 493-503
Author(s):  
Lotfali Mozafari Vanani ◽  
Hamed Moayeri Kashani ◽  
Ali Pourkamali Anaraki ◽  
Faramarz Ashenai Ghasemi

AbstractIn this paper, Charpy impact tests were conducted on cracked aluminum plates repaired with FML composite patches. The effects of the crack characteristics and patch lay-up sequence on the energy absorption of the specimens were investigated experimentally. In order to reduce the test numbers, the design of experiments method was used, and the results were predicted by response surface method. The effect of repairing on the fracture parameters [stress intensity factor (SIF), J-integral, and crack propagation direction (CPD)] at the crack front was calculated using three-dimensional (3D) finite element analysis. The results show that the value of the energy absorption increases when the crack angle increases and that the patch lay-up sequence has a significant role on the efficiency of the repair. When the location of the metal layer of the patch is near the repaired surface of the specimen, the value of the energy absorption increases.


2012 ◽  
Vol 54 (12) ◽  
pp. 125003 ◽  
Author(s):  
Masafumi Itagaki ◽  
Gaku Okubo ◽  
Masayuki Akazawa ◽  
Yutaka Matsumoto ◽  
Kiyomasa Watanabe ◽  
...  

Author(s):  
Young-Seok Choi ◽  
Yong-In Kim ◽  
Sung Kim ◽  
Seul-Gi Lee ◽  
Hyeon-Mo Yang ◽  
...  

Abstract This paper describes the numerical optimization of an axial fan focused on the blade and guide vane (GV). For numerical analysis, three-dimensional (3D) steady-state Reynolds-averaged Navier-Stokes (RANS) equations with the shear stress transport (SST) turbulence model are discretized by the finite volume method (FVM). The objective function is enhancement of aerodynamic performance with specified total pressure. To select the design variables which have main effect to the objective function, 2k factorial design is employed as a method for design of experiment (DOE). In addition, response surface method (RSM) based on the central composite design applied to carry out the single-objective optimization. Effects on the components such as bell mouth and hub cap are considered with previous analysis. The internal flow characteristics between base and optimized model are analyzed and discussed.


Author(s):  
Xiao Tang ◽  
Jiaqi Luo ◽  
Feng Liu

An adjoint-response surface method is developed to give global representation of cost function in a parametrized design space for turbomachinery blades. Radial basis function (RBF) based and quadratic polynomial (QP) based response surface models are constructed using both the values of cost function and its adjoint gradients with respect to geometry control parameters. The method is tested on a quasi-three dimensional NACA0012 blade row, then applied to the transonic Rotor 67. In preliminary design optimization stage, when the number of undetermined control parameters is large, the QP based model can provide a global image of the cost function in high dimensional design space with a small amount of sample points. In two-parameter fine optimization stage, high resolution can be achieved with the RBF based models. This gradient-enhanced response surface method is useful in guiding designers to discover the global optimum which may be missed by local gradient methods in a complicated design space. It may also be used as substitute of CFD flow solver in time consuming iterative design and optimization.


Sign in / Sign up

Export Citation Format

Share Document