scholarly journals An electrochemical impedance spectroscopy and potentiodynamic polarization study of the effect of unidirectional roughness on the corrosion of nickel

Author(s):  
A.S. Toloei ◽  
V. Stoilov ◽  
D.O. Northwood
RSC Advances ◽  
2021 ◽  
Vol 11 (41) ◽  
pp. 25314-25333
Author(s):  
Mai A. Khaled ◽  
Mohamed A. Ismail ◽  
Ahmed. A. El-Hossiany ◽  
Abd El-Aziz S. Fouda

This study targets the investigation of three pyrimidine derivatives (MA-1230, MA-1231, MA-1232) for the prevention of corrosion on copper in 1 M HNO3via weight loss (WL), potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS) techniques.


Author(s):  
Sajjad Sadeghi ◽  
Hadi Ebrahimifar

Abstract The use of ceramic particles in the matrix of alloy coatings during the electroplating process has received considerable attention. These particles can create properties such as high corrosion resistance, insolubility, high-temperature stability, strong hardness, and self-lubrication capability. Herein, an Ni–P–W–TiO2 coating was deposited on an AISI 304L steel substrate using the electroplating method. Electroplating was performed at current densities of 10, 15, 20, and 25 mA · cm–2, and the effect of current density on microstructure, corrosion behavior, and wear behavior was investigated. The coatings were characterized by means of scanning electron microscopy. To investigate corrosion resistance, potentiodynamic polarization and electrochemical impedance spectroscopy tests were performed in a 3.5% NaCl aqueous solution. A pin-on-disk test was conducted to test the wear resistance of uncoated and coated samples. Sample micro-hardness was also measured by Vickers hardness testing. Examination of the microstructure revealed that the best coating was produced at a current density of 20 mA · cm–2. The results of potentiodynamic polarization and electrochemical impedance spectroscopy tests were consistent with microscopic images. The coating created at the current density of 20 mA · cm–2 had the highest corrosion resistance compared to other coated and non-coated samples. Furthermore, the results of the wear test showed that increasing the current density of the electroplating path up to 20 mA · cm–2 enhances micro-hardness and wear resistance.


2011 ◽  
Vol 695 ◽  
pp. 425-428
Author(s):  
Duo Wang ◽  
De Ning Zou ◽  
Chang Bin Tang ◽  
Kun Wu ◽  
Huan Liu

Supermartensitic stainless steel grades are widely used in oil and gas industries to substitute duplex and super duplex stainless steels these years. In this paper the corrosion behavior of supermartensitic stainless steels with different chemical compositions, S-165 and HP, was investigated in Cl-environment. All the samples were treated by quenching at 1000 °C followed by tempering at 630 °C for 2h. After heat treatment, potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) were determined on both kinds of samples. Polarization curves shows that the metastable pitting nucleuses were formed in passive area and the Cr content is the most important factor leading to the differences of pitting potential. The potentiodynamic polarization curves were conducted at various NaCl contents (5000, 15000 and 35000 ppm) and emphasized the need to account for the Cl-sensitivity of samples under corrosion environment. The results show that, the pitting potential decrease with the increase of chloride contents. The behavior of passive film was analyzed by electrochemical impedance spectroscopy.


2019 ◽  
Vol 43 (16) ◽  
pp. 6303-6313 ◽  
Author(s):  
Ambrish Singh ◽  
K. R. Ansari ◽  
M. A. Quraishi ◽  
Savas Kaya ◽  
Priyabrata Banerjee

The corrosion inhibition behavior of a naphthoxazinone derivative 1-phenyl-1,2-dihydronaphtho[1,2-e][1,3]oxazin-3-one (PNO) on J55 steel in 3.5 wt% NaCl solution saturated with carbon dioxide was evaluated using weight loss, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization.


CORROSION ◽  
2012 ◽  
Vol 68 (5) ◽  
pp. 421-431
Author(s):  
J.L. Gama-Ferrer ◽  
J.G. Gonzalez-Rodriguez ◽  
I. Rosales ◽  
J. Uruchurtu

A study of the effect of Sn (1, 2, 3.5, 4.5, and 5 wt%) and Bi (0.5, 1.5, 3, and 4%) on the corrosion behavior of Al in ethylene glycol (C2H6O2)-40% water mixtures at 20, 40, and 60°C has been carried out using electrochemical techniques. Techniques include potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS), and electrochemical noise (EN) measurements. The three techniques have shown that additions of either Sn or Bi contents increased the corrosion rate of pure Al in all cases, and that generally speaking, the corrosion rate increased by increasing the temperature except for the alloy containing 1% Sn + 4% Bi, which showed the lowest corrosion rate at 60°C. This was because of a galvanic effect from the presence of Sn and/or Bi particles on the surface alloy, which acted as local cathodes, leading to an acceleration of corrosion. Nyquist diagrams showed two semicircles at 20°C and only one at 40°C or 60°C for all the alloys, showing two different corrosion-controlling mechanisms. EN measurements showed evidence of a mixture of both localized and uniform types of corrosion for all Al-based alloys.


2014 ◽  
Vol 1081 ◽  
pp. 318-321 ◽  
Author(s):  
Dao Bing Huang ◽  
Yuan Qiang Tu ◽  
Ting Hu ◽  
Guang Ling Song ◽  
Xing Peng Guo

The electrochemical behavior of pure Mg in H3PO4 acid (0.42 M) and phosphating solution (0.42 M H3PO4+0.34 M ZnO) was investigated through electrochemical impedance spectroscopy (EIS), potentiodynamic polarization curve and XRD measurements. The results show that Mg has higher corrosion resistance in the phosphating solution than that in the H3PO4 acid which may be due to the relative protective phosphating film on the surface.


Sign in / Sign up

Export Citation Format

Share Document