A nonlinear phase frequency detector and improved charge pump architecture to achieve fast locking of phase-locked loop

Author(s):  
Tiantian Fan ◽  
Zhigong Wang ◽  
Lu Tang
Author(s):  
P.N. Metange ◽  
K. B. Khanchandani

<p>This paper presents the analysis and design of high performance phase frequency detector, charge pump and loop filter circuits for phase locked loop in wireless applications. The proposed phase frequency detector (PFD) consumes only 8 µW and utilises small area. Also, at 1.8V voltage supply the maximum operation frequency of the conventional PFD is 500 MHz whereas proposed PFD is 5 GHz. Hence, highly suitable for low power, high speed and low jitter applications.  The differential charge pump uses switches using NMOS and the inverter delays for up and down signals do not generate any offset due to its fully symmetric operation. This configuration doubles the range of output voltage compliance compared to single ended charge pump. Differential stage is less sensitive to the leakage current since leakage current behaves as common mode offset with the dual output stages. All the circuits are implemented using cadence 0.18 μm CMOS Process.</p>


2014 ◽  
Vol 35 (10) ◽  
pp. 105006 ◽  
Author(s):  
Faen Liu ◽  
Zhigong Wang ◽  
Zhiqun Li ◽  
Qin Li ◽  
Sheng Chen

2005 ◽  
Vol 14 (05) ◽  
pp. 997-1006 ◽  
Author(s):  
ROBERT C. CHANG ◽  
LUNG-CHIH KUO ◽  
HOU-MING CHEN

A low-voltage low-power CMOS phase-locked loop (PLL) is presented in this paper. It consists of a phase frequency detector, a charge pump, a loop filter, a voltage-control oscillator, and a frequency divider. A new phase frequency detector is proposed to reduce the dead zone and the mismatch effect of the charge pump circuit. A novel charge pump circuit with a small area and wide output range is described. The PLL circuit has been designed using the TSMC 0.35 μm 1P4M CMOS technology. The chip area is 1.08 mm × 1.01 mm. The post-layout simulation results show that the frequency of 900 MHz can be generated with a single supply voltage of 1.5 V. The power dissipation of the circuit is 9.17 mW.


Sign in / Sign up

Export Citation Format

Share Document