scholarly journals LOW-IMPACT DEVELOPMENT: MINIMISING STORMWATER RUNOFF IN A CASE STUDY OF SECTION 13, SHAH ALAM, MALAYSIA

Author(s):  
ALAMAH MISNI ◽  
NOOR AIDA FARAIN AMIR SHAHFUDDIN
2016 ◽  
Vol 73 (12) ◽  
pp. 2921-2928 ◽  
Author(s):  
Marla C. Maniquiz-Redillas ◽  
Lee-Hyung Kim

Abstract In this research, an infiltration trench equipped with an extensive pretreatment and filter bed consisting of woodchip, sand and gravel was utilized as a low impact development technique to manage stormwater runoff from a highly impervious road with particular emphasis on heavy metal removal. Findings revealed that the major factors influencing the removal of heavy metals were the concentration of the particulate matters and heavy metals in runoff, runoff volume and flow rates. The reduction of heavy metals was enhanced by sedimentation of particulates through pretreatment. Fine particles (<2 mm) had the most significant amount of heavy metals, thus, enhanced adsorption and filtration using various filter media were important design considerations. Sediment was most highly attached on the surface area of woodchip than to other filter media like sand, gravel and geotextile. It is suggested that maintenance must be performed after the end of the winter season wherein high sediment rate was observed to maintain the efficiency of the treatment system.


2022 ◽  
Vol 805 ◽  
pp. 150404
Author(s):  
Gongduan Fan ◽  
Ruisheng Lin ◽  
Zhongqing Wei ◽  
Yougan Xiao ◽  
Haidong Shangguan ◽  
...  

2020 ◽  
Vol 12 (16) ◽  
pp. 6493 ◽  
Author(s):  
Priscila Celebrini de Oliveira Campos ◽  
Tainá da Silva Rocha Paz ◽  
Letícia Lenz ◽  
Yangzi Qiu ◽  
Camila Nascimento Alves ◽  
...  

The rapid urban growth followed by disordered occupation has been generating significant impacts on cities, bringing losses of an economic and social nature that directly interfere with the well-being of the population. In this work, a proposal for local urban infrastructure problems associated with watercourse management is presented, comparing Sustainable Drainage System (SuDS) techniques and Low-Impact Development (LID) concepts with alternative traditional interventions. The study addresses sustainable alternatives to cope with the urbanization of the Cehab’s open channel, which is an important urban watercourse tributary of the Muriaé River, at the municipality of Itaperuna, Rio de Janeiro—Brazil. The multi-criteria decision-making method called Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was applied here. The results highlighted the better performance of sustainable techniques when compared to the traditional ones, with an overall advantage of the geogrids and geocells for this case study. The obtained TOPSIS coefficients-C for these techniques were higher (0.59488, for Reach 1; and 0.68656, for Reach 2) than those for the others. This research, therefore, presented an important urban watercourse management methodology that can be further applied to guide sustainable investments and help the decision-making associated with the development of territories.


Author(s):  
Jing Peng ◽  
Jiayi Ouyang ◽  
Lei Yu

Abstract A sponge airport is a new concept of airport stormwater management, which can effectively relieve airport flooding and promote the usage of rainwater resources, often including the application of low impact development (LID) facilities. Although many airports in China have been chosen to implement sponge airport construction, there is a lack of quantitative evaluation on the effect of LID facilities. This paper takes Beijing Daxing International Airport as a case study and develops a comprehensive evaluation on the effect of LID facilities using the storm water management model (SWMM). The performance of four LID design scenarios with different locations and sizes of the rain barrel, the vegetative swale, the green roof, and the storage tank were analyzed. After LID, the water depth of J7 reduces from 0.6 m to 0.2 m, and duration of accumulated water reduces from 5 hours to 2.5 hours. The water depth of J17 reduces from 0.5 m to 0.1 m, and duration of accumulated water reduces from 2 hours to 15 minutes. The capacity of conduits has been greatly improved (Link 7 and Link 17). The application of LID facilities greatly improves rainwater removal capacity and effectively alleviates the waterlogging risk in the study area.


2018 ◽  
Vol 10 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Junqi Li ◽  
Yongwei Gong ◽  
Xiaojing Li ◽  
Dingkun Yin ◽  
Honghong Shi

Abstract Thermal pollution has become a severe environmental problem in China, but studies on thermal characteristics of urban stormwater runoff are scarce. The thermal enrichment of runoff from typical land surfaces was assessed during 2012–2014 in Beijing and Shenzhen, China. The temperature of stormwater runoff from rooftops, grass surfaces and different types of road surfaces was investigated under different rainfall conditions. The mitigation effects of low impact development (LID) measures were also evaluated. Impervious asphalt or concrete surfaces store and transfer heat, and were found to cause thermal enrichment of runoff from the start of a rainfall event. In addition to surface types, pre-event weather conditions and rainfall intensity influenced runoff temperature. The pervious surface of open graded friction course (OGFC) pavement postponed the time of peak runoff temperature. The retention volume of bioretention cells resulted in thermal energy mitigation by directing runoff into the soil and vegetative cover. The grass swales showed effective reduction of runoff temperature by approximately 1–2°C compared to asphalt, concrete and marble pavements. Therefore, LID measures, such as OGFC porous pavements, bioretention cells and grass swales, can mitigate the thermal impacts of urban stormwater runoff and alleviate resulting ecological problems.


Sign in / Sign up

Export Citation Format

Share Document