scholarly journals Name Nationality Classification with Recurrent Neural Networks

Author(s):  
Jinhyuk Lee ◽  
Hyunjae Kim ◽  
Miyoung Ko ◽  
Donghee Choi ◽  
Jaehoon Choi ◽  
...  

Personal names tend to have many variations differing from country to country. Though there exists a large amount of personal names on the Web, nationality prediction solely based on names has not been fully studied due to its difficulties in extracting subtle character level features. We propose a recurrent neural network based model which predicts nationalities of each name using automatic feature extraction. Evaluation of Olympic record data shows that our model achieves greater accuracy than previous feature based approaches in nationality prediction tasks. We also evaluate our proposed model and baseline models on name ethnicity classification task, again achieving better or comparable performances. We further investigate the effectiveness of character embeddings used in our proposed model.

2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Sai Nikhil Rao Gona ◽  
Himamsu Marellapudi

AbstractChoosing which recipe to eat and which recipe to avoid isn’t that simple for anyone. It takes strenuous efforts and a lot of time for people to calculate the number of calories and P.H level of the dish. In this paper, we propose an ensemble neural network architecture that suggests recipes based on the taste of the person, P.H level and calorie content of the recipes. We also propose a bi-directional LSTMs-based variational autoencoder for generating new recipes. We have ensembled three bi-directional LSTM-based recurrent neural networks which can classify the recipes based on the taste of the person, P.H level of the recipe and calorie content of the recipe. The proposed model also predicts the taste ratings of the recipes for which we proposed a custom loss function which gave better results than the standard loss functions and the model also predicts the calorie content of the recipes. The bi-directional LSTMs-based variational autoencoder after being trained with the recipes which are fit for the person generates new recipes from the existing recipes. After training and testing the recurrent neural networks and the variational autoencoder, we have tested the model with 20 new recipes and got overwhelming results in the experimentation, the variational autoencoders generated a couple of new recipes, which are healthy to the specific person and will be liked by the specific person.


2004 ◽  
Vol 213 ◽  
pp. 483-486
Author(s):  
David Brodrick ◽  
Douglas Taylor ◽  
Joachim Diederich

A recurrent neural network was trained to detect the time-frequency domain signature of narrowband radio signals against a background of astronomical noise. The objective was to investigate the use of recurrent networks for signal detection in the Search for Extra-Terrestrial Intelligence, though the problem is closely analogous to the detection of some classes of Radio Frequency Interference in radio astronomy.


2019 ◽  
Author(s):  
Stefan L. Frank ◽  
John Hoeks

Recurrent neural network (RNN) models of sentence processing have recently displayed a remarkable ability to learn aspects of structure comprehension, as evidenced by their ability to account for reading times on sentences with local syntactic ambiguities (i.e., garden-path effects). Here, we investigate if these models can also simulate the effect of semantic appropriateness of the ambiguity's readings. RNNs-based estimates of surprisal of the disambiguating verb of sentences with an NP/S-coordination ambiguity (as in `The wizard guards the king and the princess protects ...') show identical patters to human reading times on the same sentences: Surprisal is higher on ambiguous structures than on their disambiguated counterparts and this effect is weaker, but not absent, in cases of poor thematic fit between the verb and its potential object (`The teacher baked the cake and the baker made ...'). These results show that an RNN is able to simultaneously learn about structural and semantic relations between words and suggest that garden-path phenomena may be more closely related to word predictability than traditionally assumed.


Inventions ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 70
Author(s):  
Elena Solovyeva ◽  
Ali Abdullah

In this paper, the structure of a separable convolutional neural network that consists of an embedding layer, separable convolutional layers, convolutional layer and global average pooling is represented for binary and multiclass text classifications. The advantage of the proposed structure is the absence of multiple fully connected layers, which is used to increase the classification accuracy but raises the computational cost. The combination of low-cost separable convolutional layers and a convolutional layer is proposed to gain high accuracy and, simultaneously, to reduce the complexity of neural classifiers. Advantages are demonstrated at binary and multiclass classifications of written texts by means of the proposed networks under the sigmoid and Softmax activation functions in convolutional layer. At binary and multiclass classifications, the accuracy obtained by separable convolutional neural networks is higher in comparison with some investigated types of recurrent neural networks and fully connected networks.


SINERGI ◽  
2020 ◽  
Vol 24 (1) ◽  
pp. 29
Author(s):  
Widi Aribowo

Load shedding plays a key part in the avoidance of the power system outage. The frequency and voltage fluidity leads to the spread of a power system into sub-systems and leads to the outage as well as the severe breakdown of the system utility.  In recent years, Neural networks have been very victorious in several signal processing and control applications.  Recurrent Neural networks are capable of handling complex and non-linear problems. This paper provides an algorithm for load shedding using ELMAN Recurrent Neural Networks (RNN). Elman has proposed a partially RNN, where the feedforward connections are modifiable and the recurrent connections are fixed. The research is implemented in MATLAB and the performance is tested with a 6 bus system. The results are compared with the Genetic Algorithm (GA), Combining Genetic Algorithm with Feed Forward Neural Network (hybrid) and RNN. The proposed method is capable of assigning load releases needed and more efficient than other methods. 


2021 ◽  
Author(s):  
Hugo Mitre-Hernandez ◽  
Rodolfo Ferro-Perez ◽  
Francisco Gonzalez-Hernandez

BACKGROUND Mental health effects during COVID-19 quarantine need to be handled because patients, relatives, and healthcare workers are living with negative emotional behaviors. The clinical disorders of depression and anxiety are evoking anger, fear, sadness, disgust, and reducing happiness. Therefore, track emotions with the help of psychologists on online consultations –to reduce the risk of contagion– will go a long way in assisting with mental health. The human micro-expressions can describe genuine emotions of people and can be captured by Deep Neural Networks (DNNs) models. But the challenge is to implement it under the poor performance of a part of society's computers and the low speed of internet connection. OBJECTIVE This study aimed to create a useful and usable web application to record emotions in a patient’s card in real-time, achieving a small data transfer, and a Convolutional Neural Networks (CNN) model with a low computational cost. METHODS To validate the low computational cost premise, firstly, we compare DNN architectures results, collecting the floating-point operations per second (FLOPS), the Number of Parameters (NP) and accuracy from the MobileNet, PeleeNet, Extended Deep Neural Network (EDNN), Inception- Based Deep Neural Network (IDNN) and our proposed Residual mobile-based Network (ResmoNet) model. Secondly, we compare the trained models' results in terms of Main Memory Utilization (MMU) and Response Time to complete the Emotion recognition (RTE). Finally, we design a data transfer that includes the raw data of emotions and the basic text information of the patient. The web application was evaluated with the System Usability Scale (SUS) and a utility questionnaire by psychologists and psychiatrists (experts). RESULTS All CNN models were set up using 150 epochs for training and testing comparing the results for each variable in ResmoNet with the best model. It was obtained that ResmoNet has 115,976 NP less than MobileNet, 243,901 FLOPS less than MobileNet, and 5% less accuracy than EDNN (95%). Moreover, ResmoNet used less MMU than any model, only EDNN overcomes ResmoNet in 0.01 seconds for RTE. Finally, with our model, we develop a web application to collect emotions in real-time during a psychological consultation. For data transfer, the patient’s card and raw emotional data have 2 kb with a UTF-8 encoding approximately. Finally, according to the experts, the web application has good usability (73.8 of 100) and utility (3.94 of 5). CONCLUSIONS A usable and useful web application for psychologists and psychiatrists is presented. This tool includes an efficient and light facial emotion recognition model. Its purpose is to be a complementary tool for diagnostic processes.


Geophysics ◽  
2019 ◽  
Vol 85 (1) ◽  
pp. U21-U29
Author(s):  
Gabriel Fabien-Ouellet ◽  
Rahul Sarkar

Applying deep learning to 3D velocity model building remains a challenge due to the sheer volume of data required to train large-scale artificial neural networks. Moreover, little is known about what types of network architectures are appropriate for such a complex task. To ease the development of a deep-learning approach for seismic velocity estimation, we have evaluated a simplified surrogate problem — the estimation of the root-mean-square (rms) and interval velocity in time from common-midpoint gathers — for 1D layered velocity models. We have developed a deep neural network, whose design was inspired by the information flow found in semblance analysis. The network replaces semblance estimation by a representation built with a deep convolutional neural network, and then it performs velocity estimation automatically with recurrent neural networks. The network is trained with synthetic data to identify primary reflection events, rms velocity, and interval velocity. For a synthetic test set containing 1D layered models, we find that rms and interval velocity are accurately estimated, with an error of less than [Formula: see text] for the rms velocity. We apply the neural network to a real 2D marine survey and obtain accurate rms velocity predictions leading to a coherent stacked section, in addition to an estimation of the interval velocity that reproduces the main structures in the stacked section. Our results provide strong evidence that neural networks can estimate velocity from seismic data and that good performance can be achieved on real data even if the training is based on synthetics. The findings for the 1D problem suggest that deep convolutional encoders and recurrent neural networks are promising components of more complex networks that can perform 2D and 3D velocity model building.


Algorithms ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 85 ◽  
Author(s):  
Ioannis E. Livieris

During the last few decades, machine learning has constituted a significant tool in extracting useful knowledge from economic data for assisting decision-making. In this work, we evaluate the performance of weight-constrained recurrent neural networks in forecasting economic classification problems. These networks are efficiently trained with a recently-proposed training algorithm, which has two major advantages. Firstly, it exploits the numerical efficiency and very low memory requirements of the limited memory BFGS matrices; secondly, it utilizes a gradient-projection strategy for handling the bounds on the weights. The reported numerical experiments present the classification accuracy of the proposed model, providing empirical evidence that the application of the bounds on the weights of the recurrent neural network provides more stable and reliable learning.


Sign in / Sign up

Export Citation Format

Share Document