scholarly journals Dynamic Network Embedding : An Extended Approach for Skip-gram based Network Embedding

Author(s):  
Lun Du ◽  
Yun Wang ◽  
Guojie Song ◽  
Zhicong Lu ◽  
Junshan Wang

Network embedding, as an approach to learn low-dimensional representations of vertices, has been proved extremely useful in many applications. Lots of state-of-the-art network embedding methods based on Skip-gram framework are efficient and effective. However, these methods mainly focus on the static network embedding and cannot naturally generalize to the dynamic environment. In this paper, we propose a stable dynamic embedding framework with high efficiency. It is an extension for the Skip-gram based network embedding methods, which can keep the optimality of the objective in the Skip-gram based methods in theory. Our model can not only generalize to the new vertex representation, but also update the most affected original vertex representations during the evolvement of the network. Multi-class classification on three real-world networks demonstrates that, our model can update the vertex representations efficiently and achieve the performance of retraining simultaneously. Besides, the visualization experimental result illustrates that, our model is capable of avoiding the embedding space drifting.

Author(s):  
Yu Li ◽  
Ying Wang ◽  
Tingting Zhang ◽  
Jiawei Zhang ◽  
Yi Chang

Network embedding is an effective approach to learn the low-dimensional representations of vertices in networks, aiming to capture and preserve the structure and inherent properties of networks. The vast majority of existing network embedding methods exclusively focus on vertex proximity of networks, while ignoring the network internal community structure. However, the homophily principle indicates that vertices within the same community are more similar to each other than those from different communities, thus vertices within the same community should have similar vertex representations. Motivated by this, we propose a novel network embedding framework NECS to learn the Network Embedding with Community Structural information, which preserves the high-order proximity and incorporates the community structure in vertex representation learning. We formulate the problem into a principled optimization framework and provide an effective alternating algorithm to solve it. Extensive experimental results on several benchmark network datasets demonstrate the effectiveness of the proposed framework in various network analysis tasks including network reconstruction, link prediction and vertex classification.


2021 ◽  
Vol 15 (4) ◽  
pp. 1-23
Author(s):  
Guojie Song ◽  
Yun Wang ◽  
Lun Du ◽  
Yi Li ◽  
Junshan Wang

Network embedding is a method of learning a low-dimensional vector representation of network vertices under the condition of preserving different types of network properties. Previous studies mainly focus on preserving structural information of vertices at a particular scale, like neighbor information or community information, but cannot preserve the hierarchical community structure, which would enable the network to be easily analyzed at various scales. Inspired by the hierarchical structure of galaxies, we propose the Galaxy Network Embedding (GNE) model, which formulates an optimization problem with spherical constraints to describe the hierarchical community structure preserving network embedding. More specifically, we present an approach of embedding communities into a low-dimensional spherical surface, the center of which represents the parent community they belong to. Our experiments reveal that the representations from GNE preserve the hierarchical community structure and show advantages in several applications such as vertex multi-class classification, network visualization, and link prediction. The source code of GNE is available online.


Author(s):  
Yuanfu Lu ◽  
Chuan Shi ◽  
Linmei Hu ◽  
Zhiyuan Liu

Heterogeneous information network (HIN) embedding aims to embed multiple types of nodes into a low-dimensional space. Although most existing HIN embedding methods consider heterogeneous relations in HINs, they usually employ one single model for all relations without distinction, which inevitably restricts the capability of network embedding. In this paper, we take the structural characteristics of heterogeneous relations into consideration and propose a novel Relation structure-aware Heterogeneous Information Network Embedding model (RHINE). By exploring the real-world networks with thorough mathematical analysis, we present two structure-related measures which can consistently distinguish heterogeneous relations into two categories: Affiliation Relations (ARs) and Interaction Relations (IRs). To respect the distinctive characteristics of relations, in our RHINE, we propose different models specifically tailored to handle ARs and IRs, which can better capture the structures and semantics of the networks. At last, we combine and optimize these models in a unified and elegant manner. Extensive experiments on three real-world datasets demonstrate that our model significantly outperforms the state-of-the-art methods in various tasks, including node clustering, link prediction, and node classification.


2021 ◽  
Vol 11 (5) ◽  
pp. 2371
Author(s):  
Junjian Zhan ◽  
Feng Li ◽  
Yang Wang ◽  
Daoyu Lin ◽  
Guangluan Xu

As most networks come with some content in each node, attributed network embedding has aroused much research interest. Most existing attributed network embedding methods aim at learning a fixed representation for each node encoding its local proximity. However, those methods usually neglect the global information between nodes distant from each other and distribution of the latent codes. We propose Structural Adversarial Variational Graph Auto-Encoder (SAVGAE), a novel framework which encodes the network structure and node content into low-dimensional embeddings. On one hand, our model captures the local proximity and proximities at any distance of a network by exploiting a high-order proximity indicator named Rooted Pagerank. On the other hand, our method learns the data distribution of each node representation while circumvents the side effect its sampling process causes on learning a robust embedding through adversarial training. On benchmark datasets, we demonstrate that our method performs competitively compared with state-of-the-art models.


Author(s):  
Lun Du ◽  
Zhicong Lu ◽  
Yun Wang ◽  
Guojie Song ◽  
Yiming Wang ◽  
...  

Network embedding is a method of learning a low-dimensional vector representation of network vertices under the condition of preserving different types of network properties. Previous studies mainly focus on preserving structural information of vertices at a particular scale, like neighbor information or community information, but cannot preserve the hierarchical community structure, which would enable the network to be easily analyzed at various scales. Inspired by the hierarchical structure of galaxies, we propose the Galaxy Network Embedding (GNE) model, which formulates an optimization problem with spherical constraints to describe the hierarchical community structure preserving network embedding. More specifically, we present an approach of embedding communities into a low dimensional spherical surface, the center of which represents the parent community they belong to. Our experiments reveal that the representations from GNE preserve the hierarchical community structure and show advantages in several applications such as vertex multi-class classification and network visualization. The source code of GNE is available online.


Author(s):  
Wei Wu ◽  
Bin Li ◽  
Ling Chen ◽  
Chengqi Zhang

Attributed network embedding aims to learn a low-dimensional representation for each node of a network, considering both attributes and structure information of the node. However, the learning based methods usually involve substantial cost in time, which makes them impractical without the help of a powerful workhorse. In this paper, we propose a simple yet effective algorithm, named NetHash, to solve this problem only with moderate computing capacity. NetHash employs the randomized hashing technique to encode shallow trees, each of which is rooted at a node of the network. The main idea is to efficiently encode both attributes and structure information of each node by recursively sketching the corresponding rooted tree from bottom (i.e., the predefined highest-order neighboring nodes) to top (i.e., the root node), and particularly, to preserve as much information closer to the root node as possible. Our extensive experimental results show that the proposed algorithm, which does not need learning, runs significantly faster than the state-of-the-art learning-based network embedding methods while achieving competitive or even better performance in accuracy. 


Author(s):  
Zhenyu Qiu ◽  
Wenbin Hu ◽  
Jia Wu ◽  
ZhongZheng Tang ◽  
Xiaohua Jia

Network embedding assigns nodes in a network to low-dimensional representations and effectively preserves the structure and inherent properties of the network. Most existing network embedding methods didn't consider network noise. However, it is almost impossible to observe the actual structure of a real-world network without noise.  The noise in the network will affect the performance of network embedding dramatically. In this paper, we aim to exploit node similarity to address the problem of social network embedding with noise and propose a node similarity preserving (NSP) embedding method. NSP exploits a comprehensive similarity index to quantify the authenticity of the observed network structure. Then we propose an algorithm to construct a correction matrix to reduce the influence of noise. Finally, an objective function for accurate network embedding is proposed and an efficient algorithm to solve the optimization problem is provided. Extensive experimental results on a variety of applications of real-world networks with noise show the superior performance of the proposed method over the state-of-the-art methods. 


Author(s):  
Junliang Guo ◽  
Linli Xu ◽  
Jingchang Liu

Recent advances in the field of network embedding have shown that low-dimensional network representation is playing a critical role in network analysis. Most existing network embedding methods encode the local proximity of a node, such as the first- and second-order proximities. While being efficient, these methods are short of leveraging the global structural information between nodes distant from each other. In addition, most existing methods learn embeddings on one single fixed network, and thus cannot be generalized to unseen nodes or networks without retraining. In this paper we present SPINE, a method that can jointly capture the local proximity and proximities at any distance, while being inductive to efficiently deal with unseen nodes or networks. Extensive experimental results on benchmark datasets demonstrate the superiority of the proposed framework over the state of the art.


2020 ◽  
Vol 34 (04) ◽  
pp. 4091-4098 ◽  
Author(s):  
Tao He ◽  
Lianli Gao ◽  
Jingkuan Song ◽  
Xin Wang ◽  
Kejie Huang ◽  
...  

Learning accurate low-dimensional embeddings for a network is a crucial task as it facilitates many network analytics tasks. Moreover, the trained embeddings often require a significant amount of space to store, making storage and processing a challenge, especially as large-scale networks become more prevalent. In this paper, we present a novel semi-supervised network embedding and compression method, SNEQ, that is competitive with state-of-art embedding methods while being far more space- and time-efficient. SNEQ incorporates a novel quantisation method based on a self-attention layer that is trained in an end-to-end fashion, which is able to dramatically compress the size of the trained embeddings, thus reduces storage footprint and accelerates retrieval speed. Our evaluation on four real-world networks of diverse characteristics shows that SNEQ outperforms a number of state-of-the-art embedding methods in link prediction, node classification and node recommendation. Moreover, the quantised embedding shows a great advantage in terms of storage and time compared with continuous embeddings as well as hashing methods.


Author(s):  
Xiaobo Shen ◽  
Shirui Pan ◽  
Weiwei Liu ◽  
Yew-Soon Ong ◽  
Quan-Sen Sun

Network embedding aims to seek low-dimensional vector representations for network nodes, by preserving the network structure. The network embedding is typically represented in continuous vector, which imposes formidable challenges in storage and computation costs, particularly in large-scale applications. To address the issue, this paper proposes a novel discrete network embedding (DNE) for more compact representations. In particular, DNE learns short binary codes to represent each node. The Hamming similarity between two binary embeddings is then employed to well approximate the ground-truth similarity. A novel discrete multi-class classifier is also developed to expedite classification. Moreover, we propose to jointly learn the discrete embedding and classifier within a unified framework to improve the compactness and discrimination of network embedding. Extensive experiments on node classification consistently demonstrate that DNE exhibits lower storage and computational complexity than state-of-the-art network embedding methods, while obtains competitive classification results.


Sign in / Sign up

Export Citation Format

Share Document